EIILCA R

ASAL l.'l.:L'H SEAVICES

irE e e = ui

MET PLATFORM

Building XML Web Services for the Microsoft .NET Platform

by Scott Short
ISBN: 0735614067

Microsoft Press © 2002 (426 pages)

Understand how to build robust, high-performing business solutions for the Web by exploiting protocols and tools
such as SOAP, WSDL, UDDI, and XML.

For OR Forum

Whom ThisS BOOK IS FOI ... 10
How This BOOK IS Organized.............ccccoeeviieiimiessseseeeeeeee e 10
If YOU Are iN @ HUIMY ..o n
System REQUIFEMENTSc.coviiccicreseeeee ettt n
The Companion CD.........cseee e 12
Y U] o] 0 Lo] o OO 12
Chapter 1: Why Web ServiCes?........ e 1
OVEBIVIBW......ieiiiirecie ettt 14
Web Services Building BIOCKS ..., 16
Web Services Design DECISIONS.........ccccceeiieceieesiesee e, 17
Choosing TranSpPort ProtOCOIS........ccuiiiiiieeiieesiee et 17
Choosing an Encoding SCheme..........oiiieee e 18
Choosing a Formatting CoNVENTION.........ccoceiirerenenene e e 18
Choosing Description MEChaNISMScccviereiinerinene e eee e 19
Choosing Discovery MECNANISIMScccciiiiiieiieieeie e 20
What's Missing from Web Services?.......nscccsccne, 20
SUMIMABTY .ottt b et b st ss et b e et s e s nnenas 2
Chapter 2: Creating a Basic Web Service... 2
OVEBIVIBW......ieiiiirecie ettt 2
A Simple Commerce APPlICAION ... 2
Creating @ WeEbD FOIM ... et 2
Creating a Payment Web Service ..o 5
Updating the Order Web FOIrM ... e e 2
The Web File Share AppliCation ... 2
Creating the WebFileShare Web Service.........ccoveviiiiiiicieie i 2
Creating the WebFileUtil Program ... 3
SUMMETY oovitiiii bbb €3
CRAPLer 3: SOAP- ... seeeeses e essssssesessss e 37
OVEBIVIBW.......ieictessetee ettt e s 37
Anatomy Of @ SOAP MESSAQEccceeuririierereeisiseee e, 3
SOAP ACHOIS ...ttt s e e e bt st e b e e b e e e e saeesneesaeesane e e}
The Header EIEMENT...........oo e 3o
The BOdy EIEMENT ..o viv)
USiNg SOAP RPC MESSAQES......ccceuriieiereiieeies ettt ensses s 4
SOAP ENCOING ..ottt se e 46
SIMPIE TYPES ettt et s besbe e e e e tesreeneenreas virg
(@] o018] 0 To I 1Y/ 1= TSRS a7
Passing Parameters by Reference..........cooo o %
ProtoCOl BiNAING......ccouoiiieicecccerseeee e 61

YU 1010 T YT a3

Chapter 4: XML SCheMa.............oeeeeeeeeeeeeeeeseeeessssieenn &
OVEBIVIBW......ooreietessee ettt ettt &4
Describing XML DOCUMENLSc.coviieeeeieceecte et &b
BUIIEIN DAALYPES ...t 66

[T C=T0 T £ PSPPSR RPRP 74
L4110 USRS 67
BINAIY DALAL....ei ettt sttt b e e n e e &3
NAMESPEACES ...ttt e et ns st s e s senens o)
targetNamespace ALDULEcccceviiiiii s 70
XMINS ATMIDULE ... e s [t
schemaLocation AIDULE ..o e e 3
noNamespaceSchemalLocation AtrDULEccceeveieiinenieie e A
XML Schema and XML Schema Instance Namespacescccoccevvvvrveneeninns A
Element DefinitiONS.......coieecce e IS
CUSTOM DAlAtYPEScociiieeeiieririe ettt senes IS)
I 1001 0] ST I 1= 76
(0] 1010] (=3 QN Y] 0 1= RPN 8L
Element and AttribDULE GrOUPScoceiiiieiicieresisee e 8
NaMESPACE SCOPING...cveiiuriirieitiesieeseeeireesreesseeseesreesseesseesseseesseesseesseessassssesnsesnses &
POIYMOIPRISIM .o a
ReStrCting INNEIMTANCEccie e e %
IS0 1011 4= YT RT a7

Chapter 5: Using WSDL to Document Web Services

.. 100
OVEBIVIBW.......oiiiietseeie ettt 100
WSDL DOCUMENT SYNEAX.....c.oiiiiiririieeiririciet ettt s 100

defiNitioNS EIBMENToo i 101
TYPES EIBMENT ... 12
MESSAQE EIEMENL ..ot ™4
POMTYPE EIEBMENT ..ot 106
(o] o [T aTo = =70 0T= o | SO 108
SEIVICE EIBMENT ..o 110
Extensibility EIEMENTS ..o m
SOAP EXIENSIONS ...ttt ettt n e 111
HTTP GET/POST EXIENSIONScoiiiiiieiisiieie e sine sttt 115
] oTo = [T g 1= o | SRR =
DOCUMENTALION. ...ttt b e e r e sb e ae e nne e 12
The Calculator Web Service WSDL Document.........c.cccoovveeerssecnenennne, 123
SUMIMATY .ottt ettt se s b s e sa et e s e s s s e e neenanas 128

Chapter 6: ASP.INET ..o 130
OVEBIVIBW......ooiiiieirieie ettt ettt 10
Creating an ASP.NET Web SerViCe.......cconrnieneerreeseeeeseieeene, 130

Transport Protocols and BiNdiNgS.........ccccceeivveiccesceseceeeseeeeee e, 16

Web Service DoCUMENtAtioN...............cccociueuererimeeceee e, 138
RAISING EITOTS ... 142
SOAP ENCOAING SLYIES.....c.oieeieccesee et 144
ENCOdiNg REFEIENCES ...t s 147
INterface INNEITANCE. ..o e 151
MaNAGING STALE ...t 1%
SESSION STALE ...ttt e 156
FY o] 11 ot= YA [0] = L =S 160
Defining and Processing SOAP Headers............ccoovrrnecneenncennens 165
Processing UnNKNOWN HEAUEIScccovviiiiiininint s st 12
USING SOAP EXIENSIONS.....c.coiiieiriiicie ettt 174
SOAP EXtENSION AIDULESceeieecieeceeceeeee e 174
SOAP EXIENSION ClASS......ceiiiiiiiiieiriesie et 15
Using the WSDL Utility to Generate Proxy Code............ccocoeevivivicnernnnes 18
[0 O =SSR 191
COOKIES ...ttt e ettt bbbt n e 20
SUMIMATY .ottt sttt se st b e a s s e e s s se e s enans 201
Chapter 7: XML Serialization............coveevccescceeee 28
OVEBIVIBW......ooeiieisete ettt 28
Controlling XML Serialization.............cvrrscnenereeseeseseesees e, P07
Defining the Root PurchaseOrder Datatype..........cccoeminencininiiniincened 25
Defining the REBMS AITAYc.coccveiicee e 21
Creating Derived Datatypes ...t 216
Creating an Open PurchaseOrder Schema..........ccccccoeevieinieiciccrccrccnnne. 27
Defining the AcceptPO Web Method ..., 219
Server-Side Validation ... 20
Implementing Custom Serializationccooeeeiveeeeceeeeeceeee e, 21
SUMMAIY .ottt ae st ae s e beseesessebesesbensesenestensetenesseneases 21
Chapter 8: Using Remoting to Build and Consume
WED SEIVICES...........ooooooooeeeeeeeeeeeeeeeeeeeeeeemeeeeee oo 223
RemMOtiNg VS. ASP.INET ...t 23
The Grabber.NET APPlICAtiON........cccoovievierieriee et 24
RemMOting ArChILECIUIEooueiieee e e 225
Creating an 11IS-Hosted Web ServiCe ... 226
Creating a WinForm-Hosted Web Serviceccovveieniecieccesesieseeniesin 231
ACCESSING WED SEIVICEScoiuiecieectieie ettt seenne e 235
AddING SOAP HEAUEIS ..ottt e 241
GENErAtiNG WSDL ..ottt 244
Suds WSDL EXtension EIEMENTScccviviiiiniiniesie s 245
SUMIMATY .ottt e et e bt ebeseseaesesenenenennnenes 246

Chapter 9: Discovery Mechanisms for Web Services

.. 28
OVEBIVIBW......ooeiiieiiete ettt sttt e 248
O I3 I OSSP 28

UDDI AICRITECIUIE ...ttt 249
UDDI AP ettt e e e e e e e e e nr e e e e e e e e eeaan 249
L1515 Y I L PP 2
UDDI ENLEIPIISE SEIVENeciiiieiteeiieiesiesieseeee e stesseseesaestesseeseessessessesneessessessesses 23
Registering the PUICNASEr ..o 23
Registering the SUPPHET ..o 20
Visual Studio .NET INtegrationcoceeerereienine e s 25
DISCO ettt 27
Visual Studio .NET and DISCO ... 2
SUMIMAIY .ottt a ettt b bt seseaesesesennsesnne s 20

Chapter 10: Building Secure Web Services ... 281

An Introduction to Threat Modeling..........ccoernerneneereereereeeens 21
Brainstorming THIEALScccvcceeiieieiecieeese et 21
Choosing Techniques to Mitigate the Threatscccccevevieniinience s 2

Web Service Security TEChNOIOGIES........coeiirrriereere e 25
Web Services AUtNENtICALIONccocviirireiee e 286
Web Services AULNOMZAIONooceeiiiiiieeeeeeeee e 20
Web Services Privacy and INtegrity.......ccccvereiieriirient e e 21

Security Technologies in the .NET FrameworK...........cccccovveveeenrisnnnen. 2

Future Web Service Security TeChnologiescccoeevierneeseieeseenen, 2%

Common Security MISTAKES.........ccccceiviiicieeessee e 26
Mistake #1: Storing Secret Data Insecurely.........cccocvvveneninienie s 25
Mistake #2: Connecting to SQL Server INCOrrectly........cccocvvvcvrceieeseeneesnenne 296
Mistake #3: Building Insecure SQL StringsSccooererenerieneneseeeesee e 2%

AN [INDepth EXAMPIE.......coocceecee e 27
The Insecure Version (Do Not Try This at HOme!)cccccocevevvivecvie e, 27
A SECUIE SOIULIONc.eeiieiicieeiee et 23

SUMIMATY .ottt st b e s s s e e s se et nenas 01

Chapter 11: Debugging Web Services.........en, €07)
OVEBIVIBW......ooiiiieiseeie ettt s ettt w
Interactive DeDUGOING ..o w2

The Basics 0f DebUGQING......cccoiiiiiiirieierie e 32
RemMOte DEDUQGQING ...ccveiiiieieiieeie e K0¢
Web Services—Friendly Call Stack........cccocviiiiiiiiiieniin e K03

Information the Debugger NEEAS ... e 6
ASSEMDIY Metadatalccveivieieieieiee e e 307
Program Databhaseccucuiiieiieiieiiciie et 307
Tracking INfOrMatiONociieeiece e e 308
Debugging Dynamically Compiled Source Code........cccccveveeveeiirecineciee s 310

Instrumenting Webh SEerVICES ...
1= 1] 1T TR
Y= o | oo PP
Performance COUNTELSeeiiieeee ittt ve e st s bt e s s ba e e s are e s sanes

Tips and Tricks for Debugging........cccccevvicceesececee e,

SUMIMATY .ottt bbbttt

Chapter 12: Scalability and Availability.................
OVEBIVIBW......ooeiiieiiete ettt sttt e
Scaling Your WED SEIVICE ... e

S Yox= 11 o U] o PRSP
Yo 111 o K 1V SRS
Overcoming Scalability BOtHENECKSccocereriiiiiineeeeee e
Maintaining High Availabilityccccceiiiceesccceeee e
Highly Available Scale-Up RESOUICEScocririirinereeieesie e
Highly Available Scale-Out RESOUICESccceiirirererierieneseeee s
Programming Against a Highly Available Resource.........cccccooveviieeieneiennene.

Third-Party Web Services and Availabilitycccoocoevcrvieinnicesinen,
Failing Over to an Alternative Web ServiCe..........ccovrveieninenienene e
Creating an Offline Mode of Operation...........cccocevererienenesenienese s

Optimizing PerformMancCe..........cccoeiiececesseee e
CACRING .. b nae s

SUMIMATY .ottt sttt s b ne s s s e se s s et nanas

Chapter 13: The Future of Web Services.....
OVEBIVIBW......ieiiiiseeie ettt
Introducing .NET MY SEIVICES ...,

Securing .NET MY SEIVICESccviiiiirenerieie ettt
Working With .NET MY SEIVICESccceriiiiiisiieierie e seseeee st

The Global XML Web Services Architecture (GXA)cccovvverereeniennes
A LTS 1] 01T 1o o PSPPI

WS-Security and WS-LICENSE......cccuiieiiiiieieieeie sttt ae e
WS- ROULING .ottt ettt sttt nb e e b s sreennreenes

WS- RETEITAL . ettt s et e ean e
WS-Referral Registration Message EXChangecccocveveneiennnenceenic e
Dynamic Application TOPOIOGIEScccueiiriririerieseseeee e e

Orchestrating Webh SEerIVICES........ieccee e
SUMIMAIY .ottt a ettt bt s s s s et s esennsesnnnnes

Appendix: XML Schema Built-In Types........

LIS Of FIQUIES ..o e e
Chapter 10: Building Secure Web ServiCescccvvveeereeveveceereee,

LISt Of TADICSo

INEFOTUCTON <.ttt e e et e et e et e et et et et e eeeete et et eneeneeneenas

Chapter 4: XML SChema ... et e
Chapter 5: Using WSDL to Document Web Services..........cccecueuenne.
Chapter 6: ASP.INET ... s s
Chapter 7: XML Serializationccccccveveniecnieinseeeeeeseieses e,
Chapter 8: Using Remoting to Build and Consume Web Services.....
Chapter 9: Discovery Mechanisms for Web Services...........cccccucunnee.
Chapter 10: Building Secure Web ServiCesccvvvecenviseccceesn,
Chapter 11: Debugging Web SErViCeSccooevvienreesieesseesseiene,
Chapter 12: Scalability and Availability ..o,

List of Sidebars

Acknowledgments

As with any project of this magnitude, it took a considerable amount of effort from a lot of
people to deliver a complete manuscript.

I couldn’t ask for a more supportive and loving family. | would like to extend a very special
thank you to my wife, Suzanne. Without your support, | never could have completed this
book. You supported my decision to write this book even though you were pregnant with our
first child when | signed the contracts and you gave birth to our son, Colin Patrick Short,
toward the beginning of the project.

I would also like to thank my son Colin for being such a good little proofreader as he quietly

sat in my lap as | typed, at least for the first 15 to 30 minutes. Now that the book is done,
Daddy has much more time to play!

I have the unique opportunity to work for Microsoft but still enjoy the sunshine and the great
skiing that Colorado has to offer. | would like to thank the Microsoft Rocky Mountain District
management team for supporting my efforts. Specifically, | would like to thank Catharine
Morris for your creativity in making this happen. Jim Sargent, Larry Shaw, Laura Neff, and
Scott Johnson, without your support, this project would never have gotten off the ground.
Catharine and Jim, good luck with your new positions at corporate. | miss you both!

I work with a very talented group of peers in Colorado and throughout Microsoft. Of those, |
would like to thank Michel Barnett and Joe Hildebrand for your peer reviews of the first
couple of chapters and Karsten Januszewski for reviewing the Discovery chapter.

I would also like to thank Mike Howard and Peter Roxburg. Your contributions to the
manuscript directly affected getting this book in the hands of the readers in a timely fashion.
Thank you both for reading my nagging e-mails about topics | wanted covered in your
material.

I would also like to thank the Microsoft Press project team. You guys have been incredibly
supportive throughout the entire project. David Clark and | met early on to discuss potential
projects. David, thank you for thinking of me when the opportunity to write the Web services
title presented itself. Kathleen Atkins was the enforcer. Kathleen, thank you for taking on the
unenviable task of ensuring that | didn’t slip the schedule too much. Dail Magee Jr. helped
ensure the technical accuracy of the content. Dail, thank you for your colorful commentary in
the edited text. | too believe that “the publishing industry went astray when it stopped using
scrolls.” Ina Chang had the responsibility of transforming my raw material into prose.

Through the course of the project, there were quite a few late nights in which | found myself
staring at my computer screen completely exhausted and unmotivated. During these times, |
would often fire up my Web browser and look at Jeff Prosise’s Book Blog
(http://www.wintellect.com/about/instructors/prosise/bloa/), his online diary of the book-
writing experience. Reading through a couple of entries always seemed to provide

motivation to crank out a few more pages. Jeff, thank you for your inspiration as well as
taking the time to give me advice now and then.

Finally I would also like to thank all of the folks in the product group for their support with this
project. You all gave me the best material in the industry to write about. Specifically, | would

like to thank Keith Ballinger, Rob Howard, Karsten Januszewski, Angela Mills, Jonathan
Hawkins, Peter de Jong, Scott Guthrie, and Oliver Sharp.
About the Author

Scott Short

Scott Short is currently a Senior Consultant with Microsoft Consulting Services. He works
with a number of high-tech companies, helping them develop scalable, available, and
maintainable e-business applications. He is always interested in working with companies to
solve challenging problems, so feel free to contact him at sshort@microsoft.com.

Scott has also contributed to a number of books about developing .NET applications and is a
frequent speaker at professional developer conferences.

Scott’s primary motivation for moving to Colorado was to be closer to the Rocky Mountains.

When not glued to his computer, Scott enjoys spending time with his family and friends
skiing, backpacking, hiking, and rock climbing. He also loves spending evenings with his wife

Suzanne and his son Colin.

Introduction

You can hardly pick up a technical magazine, developer conference brochure, or corporate
IT strategy document without seeing a reference to Web services. So what is all the hype
about? Simply put, Web services allow developers to create unrestricted applications—
applications that span different operating systems, hardware platforms, and geographic
locations. In this book, | explain what Web services are and how you can leverage the
Microsoft .NET platform to build and consume them.

Whom This Book Is For

To get the most out of this book, you should be an experienced programmer. The platform
on which you have gained your experience is not important. However, you should have a
reasonable handle on object-oriented concepts and basic programming constructs.

You should also have some familiarity with basic C# syntax. All examples in this book are
written in C#. But even if your primary development language is not C#, the examples are
simple enough that you should be able to easily port them to other .NET languages, such as
Microsoft Visual Basic.

How This Book Is Organized

Developers generally fall into two groups: those who like to learn the underpinnings of a
technology before they use it, and those who have little concern about what is going on
under the hood and feel comfortable using a tool set that abstracts many of the details. |
personally fall into the former category and, chances are, if you have purchased a 400-plus
page book dedicated to Web services, so do you. Therefore, I've decided to take a bottom-
up approach to presenting Web services and the support that the .NET platform provides for
building and consuming them.

It is hard to make sense of the details unless you have a good grounding in how Web
services fit into the overall solution, so the first two chapters of the book provide the
necessary background. In Chapter 1, | explain the rationale behind Web services. | also
present an overview of the underlying protocols and explain how they build on one another
to provide an overall solution.

Chapter 2 offers a highdevel overview of how to use Microsoft Visual Studio .NET to create
and consume Web services hosted on the ASP.NET platform. My primary goals in this
chapter are to give you an appreciation of how well the ASP.NET runtime abstracts the
underlying protocols for the developer and to explain where the protocols come into play in
the context of a functioning Web service.

In Chapters 3 through 5, | discuss the core underlying Web services protocols in detail—
what some might consider too much detail. Frankly, much of the content in these chapters
could have gone into the appendix, but unfortunately the limitations of the publishing process
prevented me from making such a drastic change to the structure of the book. So you will
have to wait until the second edition.

Meanwhile, | recommend that you skim those chapters the first time through. As you become
more involved with Web services, you can give them a more thorough read. There is no

better way to advance your understanding of Web services than to have a deep

understanding of the underlying protocols, especially if you need to interoperate with a Web
service that is hosted on another platform.

In Chapters 6 through 8, | get into the heart of the book and explain ASP.NET and

Remoting, the core .NET technologies that enable developers to quickly build and consume
Web services. These seemingly overlapping technologies have distinctly different goals. The
primary focus of ASP.NET Web services is to maintain the fidelity of the instances of XML
datatypes passed between the client and the server. This is in sharp contrast to Remoting, in
which the primary focus is to maintain the fidelity of the instances of .NET types passed
between the client and the server. In time, these two goals will be achieved by a unified
technology set.

In the remaining chapters of the book, | cover specific topics relevant to most production-
quality Web services. Chapter 9 explains how to leverage UDDI and DISCO to advertise

your Web service and discover other Web services. In Chapter 10, | examine strategies for
ensuring that your Web services are secure. In Chapter 11, | explain how to debug your Web
service. Chapter 12 offers strategies for ensuring that your Web service meets your
scalability and availability needs. Finally, in Chapter 13, | examine some of the problems
involved in building Web services today and introduce emerging technologies that are aimed
at addressing these problems.

If You Are in a Hurry

Sometimes | have been engaged in a project for which | need to use a technology that |

know little or nothing about. In these cases, | try to learn just enough about the technology to
solve the problem at hand. When you find yourself in such a situation, take advantage of the
fact that | wrote each chapter of this book to be read individually, without requiring the
previous chapters as background. For example, you can pick up the book and start reading
Chapter 6, the ASP.NET chapter, without first reading the chapters on SOAP, XML Schema,
or WSDL.

So, without further ado, here is what | recommend you do if you want to get up to speed as
quickly as possible developing and consuming Web services:

Skim through Chapter 1to get a sense of how the technologies and protocols that compose
Web services fit together.

Read Chapter 2, and load Visual Studio .NET to follow the steps presented as | build two
simple applications. This will help familiarize you with developing basic Web services using
the Visual Studio .NET tool set.

Pick out the important pieces of Chapter 6 that apply to your project.
Read the ‘“Interactive Debugqging” section of Chapter 11, which is about debugging Web

services using the Visual Studio .NET debugger.
Read Chapters 9and 10 (on Discovery and Security, respectively) as needed.

Throughout the course of the project, thoroughly read Chapters 6 and 7 to get a concise but
in-depth overview of how to use the ASP.NET platform to develop and consume Web
services.

Finally read the other chapters as needed for your project. For example, if you plan to
leverage UDDI, read Chapter 9 for relevant information about publishing your Web services
and discovering other Web services.

System Requirements

To work through all the samples in this book, you need the hardware and software listed in
Table }1.

Table I-1: Hardware and Software Requirements

Component Requirements

Visual Studio .NET Enterprise Architect, Enterprise Developer,

Professional, or Academic Edition

| Processor | Pentium Il class, 600 MHz or faster

RAM 128 MB or more for Windows 2000 or Windows XP

Professional and 256 MB or more for Windows .NET Server

| Hard disk | 500 MB on the system drive and 3 GB on the installation drive

Operating system Windows .NET Server, Windows XP, Windows 2000 or Windows
NT 4.0

CD-ROM or DVD Required

ROM drive

| Video | 800x600 high color (16-bit or higher)

| Mouse | Microsoft mouse or compatible pointing device

The Companion CD

Many of the samples in this book were too long to print in their entirety without interruption
by explanatory text. In reading reviews of other technical books, | have learned that some
readers do not like this approach. If you prefer to see a sample application in its entirety, you
can go to the companion CD, which contains most of the source code presented in the book.

You can view the contents of the CD by inserting it into your CD-ROM drive. If you have the
Windows autorun feature enabled, a splash screen will appear and provide you with options
for use.

If you don't feel like lugging around your laptop along with this book, then bag the book! The
companion CD also contains an electronic version of the book (an eBook). One of the best
features of the eBook is that it is fully searchable. For information about installing and using
the eBook, see the Readme.txt file in the \eBook folder.

Support

I have made every effort to ensure the accuracy of the contents of this book and the
accompanying code on the companion CD. Despite my efforts, some errors and omissions
inevitably occur in this text. Therefore, monitor the list of updates and corrections that will be
posted at http://www.microsoft.com/mspress/support/ .

If you find what you believe is an error or have a suggestion as to how | could improve the
book, please send correspondence to either of the following addresses:

Postal Mail:

Microsoft Press

Attn: Building XML Web Services for the Microsoft .NET Platform Editor
One Microsoft Way

Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Reference this book within the subject line or body of the e-mail.

Please note that product support is not available through the preceding addresses. For more

information about product support, visit http://www.microsoft.com/support or call Standard
Support at 425-635-7011 weekdays between 6 a.m. and 6 p.m. Pacific Time.

Chapter 1: Why Web Services?

Overview

Component-based programming has become more popular than ever. Hardly an application
is built today that does not involve leveraging components in some form, usually from
different vendors. As applications have grown more sophisticated, the need to leverage
components distributed on remote machines has also grown.

An example of a component-based application is an end-to-end e-commerce solution. An e-
commerce application residing on a Web farm needs to submit orders to a back-end
Enterprise Resource Planning (ERP) application. In many cases, the ERP application
resides on different hardware and might run on a different operating system.

The Microsoft Distributed Component Object Model (DCOM), a distributed object
infrastructure that allows an application to invoke Component Object Model (COM)
components installed on another server, has been ported to a number of non-Windows
platforms. But DCOM has never gained wide acceptance on these platforms, so it is rarely
used to facilitate communication between Windows and non-Windows computers. ERP
software vendors often create components for the Windows platform that communicate with
the back- end system via a proprietary protocol.

Some services leveraged by an e-commerce application might not reside within the
datacenter at all. For example, if the e-commerce application accepts credit card payment
for goods purchased by the customer, it must elicit the services of the merchant bank to
process the customer’s credit card information. But for all practical purposes, DCOM and
related technologies such as CORBA and Java RMI are limited to applications and
components installed within the corporate datacenter. Two primary reasons for this are that
by default these technologies leverage proprietary protocols and these protocols are
inherently connection oriented.

Clients communicating with the server over the Internet face numerous potential barriers to
communicating with the server. Security-conscious network administrators around the world
have implemented corporate routers and firewalls to disallow practically every type of
communication over the Internet. It often takes an act of God to get a network administrator
to open ports beyond the bare minimum.

If you're lucky enough to get a network administrator to open up the appropriate ports to
support your service, chances are your clients will not be as fortunate. As a result,
proprietary protocols such those used by DCOM, CORBA, and Java RMI are not practical for
Internet scenarios.

The other problem, as | said, with these technologies is that they are inherently connection
oriented and therefore cannot handle network interruptions gracefully. Because the Internet
is not under your direct control, you cannot make any assumptions about the quality or
reliability of the connection. If a network interruption occurs, the next call the client makes to
the server might fail.

The connection-oriented nature of these technologies also makes it challenging to build the
load-balanced infrastructures necessary to achieve high scalability. Once the connection
between the client and the server is severed, you cannot simply route the next request to
another server.

14

Developers have tried to overcome these limitations by leveraging a model called stateless
programming, but they have had limited success bec ause the technologies are fairly heavy
and make it expensive to reestablish a connection with a remote object.

Because the processing of a customer’s credit card is accomplished by a remote server on
the Internet, DCOM is not ideal for facilitating communication between the e-commerce
client and the credit card processing server. As in an ERP solution, a third-party component
is often installed within the client’s datacenter (in this case, by the credit card processing
solution provider). This component serves as little more than a proxy that facilitates
communication between the e-commerce software and the merchant bank via a proprietary
protocol.

Do you see a pattern here? Because of the limitations of existing technologies in facilitating
communication between computer systems, software vendors have often resorted to

building their own infrastructure. This means resources that could have been used to add
improved functionality to the ERP system or the credit card processing system have instead
been devoted to writing proprietary network protocols.

In an effort to better support such Internet scenarios, Microsoft initially adopted the strategy

of augmenting its existing technologies, including COM Internet Services (CIS), which allows
you to establish a DCOM connection between the client and the remote component over port
80. For various reasons, CIS was not widely accepted.

It became clear that a new approach was needed. So Microsoft decided to address the
problem from the bottom up. Let’s look at some of the requirements the solution had to meet
in order to succeed.

. Interoperability The remote service must be able to be consumed by clients on other
platforms.
. Internet friendliness The solution should work well for supporting clients that access

the remote service from the Internet.

= Strongly typed interfaces There should be no ambiguity about the type of data sent
to and received from a remote service. Furthermore, datatypes defined by the remote
service should map reasonably well to datatypes defined by most procedural
programming languages.

" Ability to leverage existing Internet standards The implementation of the remote
service should leverage existing Internet standards as much as possible and avoid
reinventing solutions to problems that have already been solved. A solution built on
widely adopted Internet standards can leverage existing toolsets and products created
for the technology.

" Support for any language The solution should not be tightly coupled to a particular
programming language. Java RMI, for example, is tightly coupled to the Java language.
It would be difficult to invoke functionality on a remote Java object from Visual Basic or
Perl. A client should be able to implement a new Web service or use an existing Web
service regardless of the programming language in which the client was written.

= Support for any distributed component infrastructure The solution should not be
tightly coupled to a particular component infrastructure. In fact, you shouldn’t be
required to purchase, install, or maintain a distributed object infrastructure just to build a
new remote service or consume an existing service. The underlying protocols should
facilitate a base level of communication between existing distributed object
infrastructures such as DCOM and CORBA.

Given the title of this book, it should come as no surprise that the solution Microsoft created
is known as Web services. A Web service exposes an interface to invoke a particular activity
on behalf of the client. A client can access the Web service through the use of Internet
standards.

Web Services Building Blocks

The following graphic shows the core building blocks needed to facilitate remote
communication between two applications.

Discovery
uDDI, DISCO

Description
WSDL, XML Schema, Docs

Message Format
SOAP

Encoding
XML

Transport
HTTP, SMTP, and so on

Let’s discuss the purpose of each of these building blocks. Because many readers are
familiar with DCOM, | will also mention the DCOM equivalent of each building block.

Discovery The client application that needs access to functionality exposed by a Web
service needs a way to resolve the location of the remote service. This is accomplished
through a process generally termed discovery. Discovery can be facilitated via a
centralized directory as well as by more ad hoc methods. In DCOM, the Service Control
Manager (SCM) provides discovery services.

Description Once the end point for a particular Web service has been resolved, the
client needs sufficient information to properly interact with it. The description of a Web
service encompasses structured metadata about the interface that is intended to be
consumed by a client application as well as written documentation about the Web
service including examples of use. A DCOM component exposes structured metadata
about its interfaces via a type library (typelib). The metadata within a component’s
typelib is stored in a proprietary binary format and is accessed via a proprietary
application programming interface (API).

Message format In order to exchange data, a client and a server have to agree on a
common way to encode and format the messages. A standard way of encoding data
ensures that data encoded by the client will be properly interpreted by the server. In
DCOM, messages sent between a client and a server are formatted as defined by the
DCOM Object RPC (ORPC) protocol.

Without a standard way of formatting the messages, developing a toolset to abstract the
developer from the underlying protocols is next to impossible. Creating an abstraction
layer between the developer and the underlying protocols allows the developer to focus
more on the business problem at hand and less on the infrastructure required to
implement the solution.

" Encoding The data transmitted between the client and the server needs to be
encoded into the body of the message. DCOM uses a binary encoding scheme to
serialize the data contained by the parameters exchanged between the client and the
server.

. Transport Once the message has been formatted and the data has been serialized
into the body of the message, the message must be transferred between the client and
the server over some transport protocol. DCOM supports a number of proprietary
protocols bound to a number of network protocols such as TCP, SPX, NetBEUI, and
NetBIOS over IPX.

Web Services Design Decisions

Let’s discuss some of the design decisions behind these building blocks for Web services.

Choosing Transport Protocols

The first step was to determine how the client and the server would communicate with each
other. The client and the server can reside on the same LAN, but the client might potentially
communicate with the server over the Internet. Therefore, the transport protocol must be
equally suited to LAN environments and the Internet.

As | mentioned earlier, technologies such as DCOM, CORBA, and Java RMI are ill suited for
supporting communication between the client and the server over the Internet. Protocols
such as Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP) are
proven Internet protocols. HTTP defines a request/response messaging pattern for
submitting a request and getting an associated response. SMTP defines a routable
messaging protocol for asynchronous communication. Let's examine why HTTP and SMTP
are well suited for the Internet.

HTTP-based Web applications are inherently stateless. They do not rely on a continuous
connection between the client and the server. This makes HTTP an ideal protocol for high-
availability configurations such as firewalls. If the server that handled the client’s original
request becomes unavailable, subsequent requests can be automatically routed to another
server without the client knowing or caring.

Almost all companies have an infrastructure in place that supports SMTP. SMTP is well
suited for asynchronous communication. If service is disrupted, the e-mail infrastructure
automatically handles retries. Unlike with HTTP, you can pass SMTP messages to a local
mail server that will attempt to deliver the mail message on your behalf.

The other significant advantage of both HTTP and SMTP is their pervasiveness. Employees
have come to rely on both email and their Web browsers, and network administrators have
a high comfort level supporting these services. Technologies such as network address
translation (NAT) and proxy servers provide a way to access the Internet via HTTP from
within otherwise isolated corporate LANs. Administrators will often expose an SMTP server
that resides inside the firewall. Messages posted to this server will then be routed to their
final destination via the Internet.

In the case of credit card processing software, an immediate response is needed from the
merchant bank to determine whether the order should be submitted to the ERP system.
HTTP, with its request/response message pattern, is well suited to this task.

Most ERP software packages are not capable of handling large volumes of orders that can
potentially be driven from the e-commerce application. In addition, it is not imperative that

17

the orders be submitted to the ERP system in real time. Therefore, SMTP can be leveraged
to queue orders so that they can be processed serially by the ERP system.

If the ERP system supports distributed transactions, another option is to leverage Microsoft
Message Queue Server (MSMQ). As long as the eccommerce application and the ERP
system reside within the same LAN, connectivity via non-Internet protocols is less of an
issue. The advantage MSMQ has over SMTP is that messages can be placed and removed
from the queue within the scope of a transaction. If an attempt to process a message that
was pulled off the queue fails, the message will automatically be placed back in the queue
when the transaction aborts.

Choosing an Encoding Scheme

HTTP and SMTP provide a means of sending data between the client and the server.
However, neither specifies how the data within the body of the message should be encoded.
Microsoft needed a standard, platform-neutral way to encode data exchanged between the
client and the server.

Because the goal was to leverage Internet-based protocols, Extensible Markup Language
(XML) was the natural choice. XML offers many advantages, including cross-platform
support, a common type system, and support for industry -standard character sets.

Binary encoding schemes such as those used by DCOM, CORBA, and Java RMI must
address compatibility issues between different hardware platforms. For example, different
hardware platforms have different internal binary representation of multi-byte numbers. Intel
platforms order the bytes of a multi-byte number using the little endian convention; many
RISC processors order the bytes of a multi-byte number using the big endian convention.

XML avoids binary encoding issues because it uses a text-based encoding scheme that

leverages standard character sets. Also, some transport protocols, such as SMTP, can
contain only text-based messages.

Binary methods of encoding, such as those used by DCOM and CORBA, are cumbersome
and require a supporting infrastructure to abstract the developer from the details. XML is
much lighter weight and easier to handle because it can be created and consumed using
standard text-parsing techniques.

In addition, a variety of XML parsers are available to further simplify the creation and
consumption of XML documents on practically every modern platform. XML is lightweight
and has excellent tool support, so XML encoding allows incredible reach because practically
any client on any platform can communicate with your Web service.

Choosing a Formatting Convention

It is often necessary to include additional metadata with the body of the message. For
example, you might want to include information about the type of services that a Web
service needs to provide in order to fulfill your request, such as enlisting in a transaction or
routing information. XML provides no mechanism for differentiating the body of the message
from its associated data.

Transport protocols such as HTTP provide an extensible mechanism for header data, but
some data associated with the message might not be specific to the transport protocol. For
example, the client might send a message that needs to be routed to multiple destinations,
potentially over different transport protocols. If the routing information were placed into an
HTTP header, it would have to be translated before being sent to the next intermediary over

another transport protocol, such as SMTP. Because the routing information is specific to the
message and not the transport protocol, it should be a part of the message.

Simple Object Access Protocol (SOAP) provides a protocol-agnostic means of associating
header information with the body of the message. Every SOAP message must define an
envelope. The envelope has a body that contains the payload of the message and a header
that can contain metadata associated with the message.

SOAP imposes no restrictions on how the message body can be formatted. This is a
potential concern because without a consistent way of encoding the data, it is difficult to
develop a toolset that abstracts you from the underlying protocols. You might have to spend
a fair amount of time getting up to speed on the Web service’s interface instead of solving
the business problem at hand.

What was needed was a standard way of formatting a remote procedure call (RPC)
message and encoding its list of parameters. This is exactly what Section 7 of the SOAP
specification provides. It describes a standard naming convention and encoding style for
procedure-oriented messages. | will discuss SOAP in more detail in Chapter 3.

Because SOAP provides a standard format for serializing data into an XML message,
platforms such as ASP.NET and Remoting can abstract away the details for you. In the next
chapter, | will show how to create and consume two Web services for which knowledge of
SOARP is not required.

Choosing Description Mechanisms

SOAP provides a standard way of formatting messages exchanged between the Web
service and the client. However, the client needs additional information in order to properly
serialize the request and interpret the response. XML Schema provides a means of creating
schemas that can be used to describe the contents of a message.

XML Schema provdes a core set of built-in datatypes that can be used to describe the
contents of a message. You can also create your own datatypes. For example, the merchant
bank can create a complex datatype to describe the content and structure of the body of a
message used to submit a credit card payment request.

A schema contains a set of datatype and element definitions. A Web service uses the

schema not only to communicate the type of data that is expected to be within a message
but also to validate incoming and outgoing messages.

A schema alone does not provide enough information to effectively describe a Web service,
however. The schema does not describe the message patterns between the client and the
server. For example, a client needs to know whether to expect a response when an order is
posted to the ERP system. A client also needs to know over what transport protocol the Web
service expects to receive requests. Finally, the client needs to know the address where the
Web service can be reached.

This information is provided by a Web Services Description Language (WSDL) document.

WSDL is an XML document that fully describes a particular Web service. Tools such as
ASP.NET WSDL.exe and Remoting SOAPSUDS.exe can consume WSDL and automatically
build proxies for the deweloper.

As with any component used to build software, a Web service should also be accompanied
by written documentation for developers who program against the Web service. The

documentation should describe what the Web service does, the interfaces it exposes, and

some examples of how to use it. Good documentation is especially important if the Web
service is exposed to clients over the Internet.

Choosing Discovery Mechanisms

Once you've developed and documented a Web service, how can potential clients locate it?
If the Web service is designed to be consumed by a member of your development team,
your approach can be pretty informal, such as sharing the URL of the WSDL document with
your peer a couple of cubicles down. But when potential clients are on the Internet,
advertising your Web service effectively is an entirely different story.

What's needed is a common way to advertise Web services. Universal Description,
Discovery, and Integration (UDDI) provides just such a mechanism. UDDI is an industry-
standard centralized directory service that can be used to advertise and locate Web
services. UDDI allows users to search for Web services using a host of search criteria,
including company name, category, and type of Web service.

Web services can also be advertised via DISCO, a proprietary XML document format
defined by Microsoft that allows Web sites to advertise the services they expose. DISCO
defines a simple protocol for facilitating a hyperlink style for locating resources. The primary
consumer of DISCO is Microsoft Visual Studio .NET. A developer can target a particular
Web server and navigate through the various Web services exposed by the server.

What's Missing from Web Services?

You might have noticed that some key items found within a distributed component
infrastructure are not defined by Web services. Two of the more noticeable omissions are a
well-defined API for creating and consuming Web services and a set of component services,
such as support for distributed transactions. Let’s discuss each of these missing pieces.

" Web service—specific APl Most distributed component infrastructures define an API
to perform such tasks as initializing the runtime, creating an instance of a component,
and reflecting the metadata used to describe the component. Because most high-level
programming languages provide some degree of interoperability with C, the API is
usually exposed as a flat set of C method signatures. RMI goes so far as to tightly
couple its APl with a single high-level language, Java.

In an effort to ensure that Web services are programming language—agnostic, Microsoft
has left it up to individual software vendors to bind support for Web services to a
particular platform. | will discuss two Web service implementations for the .NET
platform, ASP.NET and Remoting, later in the book.

. Component services The Web services platform does not provide many of the
services commonly found in distributed component infrastructures, such as remote
object lifetime management, object pooling, and support for distributed transactions.
These services are left up to the distributed component infrastructure to implement.

Some services, such as support for distributed transactions, can be introduced later as
the technology matures. Others, such as object pooling and possibly object lifetime
management, can be considered an implementation detail of the platform. For example,
Remoting defines extensions to provide support for object lifetime management, and
Microsoft Component Services provides support for object pooling.

Summary

Component-based programming has proven to be a boon to developer productivity, but
some services cannot be encapsulated by a component that resides within the client’s
datacenter. Legacy technologies such as DCOM, CORBA, and Java RMI are ill-suited to
allowing clients to access services over the Internet, so Microsoft found it necessary to start
from the bottom and build an industry-standard way of accessing remote services.

Web services is an umbrella term that describes a collection of industry- standard protocols
and services used to facilitate a base-line level of interoperability between applications. The
industry support that Web services has received is unprecedented. Never before have so
many leading technology companies stepped up to support a standard that facilitates
interoperability between applications, regardless of the platform on which they are run.

One of the contributing factors to the success of Web services is that they’re built on existing
Internet standards such as XML and HTTP. As a result, any system capable of parsing text
and communicating via a standard Internet transport protocol can communicate with a Web
service. Companies can also leverage the investment they have already made in these
technologies.

Chapter 2: Creating a Basic Web Service

Overview

In this chapter, | show you how to build a couple of Web services so that you can see how
eagsy it is to do. In later chapters, when | discuss the underlying protocols, you will more fully
appreciate how much complexity is abstracted for you by the .NET platform. In this chapter, |
make high-level references to those underlying technologies to give you a basic
understanding of where they fit into the larger picture.

In the first example, you create a simple commerce application in Microsoft ASP.NET—a
Web Form for collecting payment information. Then you create a Web service that performs
credit card validation business logic on behalf of the application. This example shows you
how easy it is to refactor an existing .NET application to move business logic into a Web
service so that it can be used by other applications.

In the second example, you create a Web service for sending and receiving binary files. As |
mentioned in Chapter 1, messages between the Web service and the client are encoded in
XML. Because XML is a text-based markup language, we can encode something into the
message that might be surprising: the contents of a binary file. The binary file is contained
within a complex type. The complex type also contains information about the file. This
example demonstrates to you the robustness of the underlying .NET Framework.

These two scenarios should give you a good idea of what the .NET platform offers. | also
show you in this chapter how the rapid application development capabilities of Microsoft
Visual Studio .NET simplify development of applications that expose or consume Web
services. Because the best way to learn is by doing, | encourage yau to fire up Visual Studio
.NET and step through the processes | describe to create the sample applications yourself.

A Simple Commerce Application

You will first create an ASP.NET Web Form that collects and validates credit card

information. The Web Form allows users to enter their credit card information, and then it
informs users whether the information they entered is valid. You then move the credit card

validation logic into a Web service and modify the Web Form so that it calls the Web service
to validate the credit card information.

Creating a Web Form

You can create a Web Form by opening Visual Studio .NET and creating a new Web
Application project. Set the project type to your language of choice, and select the Web
Application template. Name your project Commerce, and set the location to a URL that
points to the targeted Web server, as shown here:

Froject Types: Templates:
I 0 Vil Bsic Projects [-— —_— A
3 Vs CF Progects .li—l=| ﬁJ’ 3-’-J
] Vil S+ Projects Wirsows Clast Lbeary Wiradown
] Sehap and Deployment Projects Appde st Cordyof LiEvary

I+] Okher Projects

LASEHET wels ASPRET Wb Wb Control
| Apphcatin Samvaln Lwary

A prodact For cresting an spolcstion with & Wb user rterface
Pave:
Location: hitte [l st [t x| Eeows. |

Projct will e craated ot hiap: | Mocalboa }Commar s,

Fherg j [] Carcel Hels |

Visual Studio .NET creates a project on the specified Web server and places template Web
application files into that directory. Included in these files is a Web Form page named
WebForml.aspx. Rename it Order.aspx, and then change the name of the class defined
within Order.aspx from WebForm1to Order by following these steps:
1. Open the Order.aspx code-behind file by right-clicking on the filename in Solution
Explorer and selecting View Code.
2. Change the name of the WebForm1 class and its corresponding constructor to Order.
3. In the Properties pane, change the name of the label to Status, the text of the label to
Please enter your credit card information, the name of the button to PlaceOrder, and
the text of the button to Place Order. After you adjust the layout and add some
additional text, the Web Form should look similar to the following:

% s Fnod | Dt | ideaornen [deabgn] - O e am e

:fu- i ew Ppopa pll fehey Spe foma P e Ppeees Sooe edoe e
:.a'_l'd-:rhl# 1 0l & Dopbeag LA) ,;_—_..--:,5- -
1 -

|68 e pa® | o | St Eaglerar 3 M
| 3 =
Firaie futnt foir el card sforeatsia :M':m:l 11 prmsct)
™ Cervavarcn
f L Lo 2]
Pt Card Mossbar) LT
ﬁ LT E e
B z ' al Ebal s
Exparabin Dalbe L Detrtmieer 20001 * by L
S Mon Tor Wed Tt Fn Ss 1§ vt cxniiy
a3 M 3 = ¥ M | J —r—
: .- W s g [T
2 ¥ 4 5 &£ T i
L " 3 1 I’
o 1 10 1 13 M4 ES e P
¢ 3 14]
ML AL AR AR A =y .
23 M] % T 2 25 a '|
non 12 ¥4 d e REC
ey e (Dol =]
F
Placs Dwda i b
i bk o Pk dodun Ll

I ik R [0

Next you provide the implementation for the Place Order button. To add an event handler for
the order button, double-click it and write the following code so that when the user clicks the
button, the Validate method is called to determine whether the credit card information the
user entered is valid. The code will also adjust the label’s text to display appropriate text to
inform the user whether the credit card was valid.

public void PlaceOrder_Click(object sender. Syste.EventArgs e)

{
i f(Validate(TextBox1. Text, Cal endarl. Sel ect edDate))

{

Status. Text = "Thank you for your order.";
}
el se
{
Status. Text = "Credit card invalid.";
}

}

Next you create the Validate method immediately following the PlaceOrder_Click method.
public bool Validate(string cardNunber, DateTi ne expDat e)
{
i f (expDate >= DateTi me. Today)
{
int total = O;
int tenp = O;
char [] ccDigits = cardNunber. ToCharArray();

for(int i = 0; i < cardNunber.Length; i++)
{
if(((i+1)®) == 0)
{
total += int.Parse(ccDigits[i].ToString());
}
el se
{
temp = int.Parse(ccDigits[i].ToString()) * 2;
if(tenp > 9)
{
temp = (int)tenp - 9;
}
total += tenp;
}

i f((total 940) ==0)
{

return true;

24

}

el se
{
return fal se;
}
}
el se
{
return fal se;
}

}

The Validate method determines whether the expiration date has passed. If it has not, the
Validate method uses a standard mod10 algorithm to validate the credit card number.

Now compile and test the Web application to ensure that it works as expected.

Creating a Payment Web Service

At this point, the validation functionality is embedded in the Web Form. Now | will show you
how to leverage the validation functionality within other applications. For example, you might
want to develop a WinForm application for running the cash registers. This application would
probably need to call the same logic to validate credit cards. If you expose the validation
logic as a Web service, any application that can send and receive XML over HTTP will be
able to invoke the service to validate credit card information.

You have a couple of options for creating the new Web service. You can simply add the Web

service to an existing application by choosing Add Web Service from the Project menu. Or
you can create a new project to contain the Web service.

Recall that your intention is to have the credit card validation logic serve as a shared

resource across multiple applications. It might have infrastructure and scalability
requirements that differ from those of the commerce application. So, in this case you will

create a separate application—a Visual Studio .NET Web service application.

First open Visual Studio .NET and select Create New Project. Set the project type to your
language of choice, and select the Web Service template. Name the project Payment, and
set the location to a URL that points to the targeted Web server, as shown here:

Mirw Frrg i pel : &

Eregedt Types: Templstes: H] = |
. = — —
3 Visad CF Progects o] ﬂJ’ laﬂ
o Vil Cb Propets Wi ClsiLBrary Wirdows
) Setup and Deployment Projects Apphcation Cordrol Libwary
+ (] kher Projects

) Vsl Shudo Sektkors , @ m_;
T
AT HET Wely Wb Cortrol
ey Library
"

A prodact For cresting XML Web services bo use from other sppbcstions
e
Location: [bt ocahest fPayment _-_. Erowss, .

Progect wll be craated of Hap: Mot abost P aymmant,

FHerg o Cancel ek |

Change the name of the Servicel.asmx file to CreditCard.asmx. Because it is good practice
to have the class name match the name of the .asmx file, change the name of the Servicel
class to CreditCard. Visual Studio .NET creates a code-behind file for the .asmx file similar
to those it creates for .aspx files, so you must open CreditCard.asmx.cs to modify the class
declaration. To view the code-behind file, right-click on CreditCard.asmx and choose View

Code. Change the name of the Servicel class and its corresponding constructor to
CreditCard.

Next cut the Validate method from the Order Web Form and paste it into the CreditCard
class. Then decorate the class with the WebMethod attribute and compile the application.
The WebMethod attribute is the only code required to expose the Validate method on the
Web!

[WebMet hod]
public bool Validate(string cardNunber, DateTi me expDat e)

{

}

The WebMethod attribute tells the ASP.NET runtime to provide all of the implementation
required to expose a method of a class on the Web—including the ability to advertise the
Web service’s functionality in the form of Web Services Description Language (WSDL).
Visual Studio .NET will use the automatically generated WSDL to create a reference to the
Web service in your commerce application.

Another service that ASP.NET provides the Payment Web service is the automatic
generation of documentation for the Web service and a test harness. To invoke this
functionality, use a Web browser to navigate to the CreditCard.asmx file, as shown here:

W CreirTand Teb Sivwbos M jorialn livteiael T st v

Fia R o Fporim [k Heb s

e u] (] £ Sy Frrins il eeda {5 o 58
L o |t sl ey el el il s '\-' ,;]l:r: i
CreditCard
Fp Folpaeg pogeafisny anp sgpperted tor g Verrgl daledoe, plpgty ravma S Spev e Brsorslien

Ehit worh dervion b sl Birg) § fiesspard ang /&1 i3 delfaelt nafecpane,

Fripmmradalica: Chargre the delasll namewpair belore the 308 Web vershee I made pelibc.

I ot 5h, WEE 1Dl Pl e PR O S e R ML B0 Sniaath & e othe dET A o the WL
e S g 0 penlae A 5 ML mah sprewen Bab pop under grsebamary, bl passhed ML wab qervesn theld e g

AL [T B LT LT

Voms FHE, Woalh dnson hinedl e oluiddoisd by b Barvmpgiin Wl pies diedigd Pt mo i, pleg it wmd ping diariasin s ider vl
ST BETH W AL O O BATHE O AR I T, B DR RWTHR L el B DB L, Tl e Pl RN 1
pul reeaEs on B wmph. (eHL 'Web perves asmmpscen B GBI

For WML Web Ereorr oreateg sy ATF BET, Fen defeu® remangror cam S chomrged s Ba mekSareoe sirbee'y

Mg por propety The Bellereon s@rdabe 1 oan, p8rlede spebrd by e clees Bt ped s B oM @l serace sl
Buliew ii @ boedw o T L Tk e e R TR EP i e b e

[ebls cvics (e ppace= "R pr/ feiorseat ool weteearvican’ v |
puinbic clsse EyisbSsrvics
£

o Do a8 Lorsd infrared
=

Next test the Validate method using the test harness supplied with the documentation.
Entering a valid credit card number and a date of 1/1/2052 produces the following results
(assuming you are not reading a 50-year-old book):

<?xm version="1.0" encodi ng="utf-8" ?>

<bool ean xm ns="http://tenpuri.org/">true</bool ean>

As expected, the result is true. However, the XML response message is not a valid SOAP
message. There are multiple ways in which an ASP.NET-hosted Web service can be called.

The Web service will return a wellformed SOAP message only if the request was a SOAP
message. | will discuss ASP.NET-hosted Web services in detail in Chapter 6.

Updating the Order Web Form

The next task is to switch back to the Commerce application and update the Order Web

Form so that it calls the CreditCard Web service to validate the user’s credit card. You first
add a Web reference for the CreditCard Web service to the commerce application by using
the Web Reference Wizard.

You start the wizard by choosing Add Web Reference from the Project menu. In the Address
text box, enter the URL to the server that hosts your targeted Web service. Click on the link

to the Payment Web service that is listed in the right pane, as shown here:

o=] sdwin | I Rousbet v Wy vadeeo |

eyl 1 b o

wyy | W e

i L T
b e ¥ T

fx "t g f Flocathos fPaymant / Crodi B e
e Tt/ Mlocalhost P ayimant f Cradit Carml.a

Tt e srmlvoap sy fillves S/

Ak Entprerre Cores .

Click Add Reference. You should see the Web reference listed in Solution Explorer. Visual
Studio .NET processes the WSDL metadata associated with the Payment Web service and

automatically creates a proxy. You can think of WSDL as the Web services equivalent of a
TypeLib. The resulting proxy allows the Web service to be treated like any other .NET class.

Next you alter the implementation of the PlaceOrder_Click method to call the Web service
instead of the local Validate function. First create an instance of the CreditCard class by
using the new keyword as you would with any other .NET type. Notice that the default
namespace for the Web service is the name of the server on which it resides.

public void PlaceOrder_Click (object sender, System EventArgs e)

{
| ocal host. CreditCard cc = new | ocal host. CreditCard();

Finally you call the Validate method on the cc object to cause a communication exchange to
occur between the client (the Order Web Form) and the CreditCard Web service.

i f(cc.Validate(TextBox1l. Text, Cal endarl. Sel ectedDate))

{

Status. Text = "Thank you for your order.";
}
el se
{
Status. Text = "Credit card invalid.";
}

}

If you are writing the code as you read this chapter, notice that you have full IntelliSense

support for the cc object. After you type cc., the list of methods supported by the object,
including the Validate method, will be shown. As soon as you type the opening parenthesis

for the method, the parameters for the method will be displayed—including the .NET
equivalent of the Web service’s parameter types.

As you have seen, it is easy to refactor a .NET application to expose its business logic via
Web services. You simply copy the local method and place it into the .asmx code-behind file
for the Web service. The only code required to expose the method via HTTP is the

WebMethod attribute. Once the code is compiled and deployed, any client that supports
HTTP and is capable of parsing strings can call the method.

The Web File Share Application

This example will create a Web service that allows binary files to be transferred over HTTP
and SOAP. Because SOAP leverages an XML-based method of encoding, you must
represent method parameters and return values in a way that is conducive to XML.

In the preceding example, it was rather straightforward to encode the credit card number and
the expiration date. In this example, the Web service will encode complex types that contain,
among other things, binary data. As you will see, the .NET platform will handle the encoding

and decoding for you. It will ensure that byte arrays are encoded so that they do not
introduce special characters into the SOAP message that would invalidate the XML.

Before | go any further, | want to throw in a little disclaimer: There are more efficient ways of
sending the content of a file over the Web than encoding it into a SOAP message. The
purpose of this example is not to create a replacement for FTP; it is to demonstrate the
power and flexibility of Web services and the robustness of the .NET platform.

Creating the WebFileShare Web Service

The WebFileShare Web service will expose two methods, ListFiles and GetFile. ListFiles is
used to obtain a list of files that are available from the Web service, and GetFile will allow the

client to retrieve the specified file.

First you create a Visual Studio .NET Web Service project using steps similar to those
shown in the previous example: Open Visual Studio .NET, and create a new project. Set the
project type to your language of choice, and select the Web Service template. Name your
project WebFileShare, and set the location to a URL that points to the targeted Web server.

Change the name of the Servicel.asmx file to WebDirectory.asmx. Right- click on
WebDirectory.asmx, and choose View Code. Change the name of the Servicel class and its

corresponding constructor to WebDirectory. Then modify the Inherits property in the ASMX
header to point to the new class name.

Now that you have set up the Visual Studio .NET project, you will add the implementation to

enable the client to request and retrieve files. First you need to create an alias for the
System.lO namespace with the using keyword. Underneath the using statement that creates

an alias for the System.Web.Services namespace, type the following statement:
usi ng System G,

Next you define the WebFile structure, which encapsulates the contents of the file in addition
to its metadata. The file structure contains the name of the file, the file’s contents, and the
file system attributes associated with the file.
Define the following structure immediately after the WebFileShare namespace is defined:
public struct WebFile
{
public string Nare;
public byte[] Cont ent s;
public DateTinme CreationTime;

public DateTime LastAccessTi ne;
public DateTine LastWiteTine;

}

Next you need to create a number of methods within the WebFileShare class. These
methods will be defined immediately before the example Helloworld method.

The first method that must be defined returns a list of files available for download in the
c:\Public directory. The list of files is returned as an array of strings. The .NET Framework
will properly serialize the array for you.

[WebMet hod]
public string[] ListFiles()
{

return Directory. GetFiles("c:\\Public");
}

Next you create a GetFile method that allows the client to request a file. If the file is
available, an instance of the WebFile structure should be sent back to the client. In this
method, you use the System.lO.File object to obtain the necessary information about the file.
You obtain a Stream object from the File object and write the contents of the stream into a
byte array in the WebFile structure. You also set the CreationTime, LastAccessTime, and
LastWriteTime fields to the values obtained from the associated static methods exposed by
the File class.

[WebMet hod]
public WebFile GetFile(string fil eNane)
{

WebFi | e webFil e = new WebFile();
string filePath = "c:\\ Public\\" + fil eNane;

/] Set the name of the file.
webFi |l e. Name = fil eNane;

/1 Obtain the contents of the requested file.
Streams = File.Open(filePath, FileMde.Open);

webFil e. Contents = new byte[s. Length];

s. Read(webFil e. Contents, 0, (int)s.Length);

s. Cl ose

/'l Retrieve the date/tine stanps for the file.
webFile.CreationTinme = File.GetCreationTi ne(fil ePath);

webFi | e. Last AccessTi ne =
Fil e. Get Last AccessTi ne(fil ePath);

webFile. LastWiteTine = File. GetLastWiteTinme(filePath);

return webFil e;

After the WebFile structure is initialized, it is sent back to the client. Once again, the .NET
Framework performs the appropriate serialization. In this case, the instance of the structure
is serialized, including its data. The Contents byte array is encoded into its Base-64
representation. Base-64 encoding maps each byte of the array into an alphanumeric
character that can be contained within the XML document without introducing any invalid
characters. In addition, the values of the Name, CreationTime, LastAccessTime, and
LastWriteTime fields are serialized into the SOAP message.

In future chapters, | will discuss in detail how the .NET Framework encodes more complex
data types such as structures, byte arrays, and enumerations. The important thing to realize
is that the resulting message is 100 percent compliant with the industry-standard SOAP
specification. Therefore, clients on other platforms, operating systems, or hardware can
interact with your WebDirectory Web service.

Now that you have built the Web service, let's create a client for retrieving files through the
WebFileSystem Web service.

Creating the WebFileUtil Program

Next you will create a console application to retrieve files from the WebFileShare Web
service. This console application will accept at least two command- line arguments: a
command specifying the action to take, and the name of the targeted file. You can optionally
specify a third argument if you want to specify the name of the destination file. Otherwise,

the default value is the original name of the file.

Start by opening Visual Studio .NET and selecting Create New Project. Set the project type
to your language of choice, select the Console Application template, and name the project
WebFileUtil, as shown here:

Hew Project
Ereiect Types Templates: i =
] Visusd Basic Projects — — -
3 Vil Projects ? &P [

o) Wl Cak Projects
] Sehup and Deployemeent Peojects N"x-ﬂ;ﬂ"! “;r-\dc‘-ws Ermply Progact
|| ther Projects w0 bl

] Wriual Sy Sikotios ‘a &
Emphy Wab Pesw Project In
Progect Exabing Folder w
A, prodect for cresting & command-ire spplcation
P! et
Location: CADerurents and Settirgslashort My Doturmenbslvsy - | Eiroweis, .

Projoct vl e craated ot O\ LabaeliMy Docurmanbalnual Studke ProjectiTwelFialel,

Eherg | [Carcel Fel

You can change the name of the Servicel file (with an extension based on the language you
chose) to WebFileUtil and then delete the default implementation in WebFileUtil provided by
Visual Studio .NET.

Next you add a Web reference to the WebDirectory Web service. Start the Web Reference
Wizard by choosing Add Web Reference from the Project menu. In the Address text box,
enter the URL of the server that hosts the Web service. Click on the link to the
WebFileShare directory. The WebFileShare Web service will automatically be selected, as
shown here:

= (2] ioreins | et Accateot et P /e e, - E3

-——
eyl B A

nyy | S

= Ay i bt feret Pl e e L ek

2 Fincal Share /i
Fala hitp f Mlocallos fWebF leEhars f Servioo
i ¢ il i it nap_ g RACe el
g/ Flocathout fWebl e Shane /1 P Lok i
ncalst f WebF logharn /W WLia—_———

oot b Shore b o e et

& Ertererce Care -

Click the Add Reference button. Change the name of the new W eb reference listed in
Solution Explorer to WebFileShare.

Now that you have created and configured a Web reference, let's step through a C#
implementation of WebFileUtil.

First you import the System.lO namespace into the project. This will simplify your code when
you use the File class in the code below. You must also import the namespace of your Web

reference, WebFileShare.

usi ng System

usi ng System G

usi ng WebFil eUtil.WebFil eShare;

nanespace WebFileltil
{
You then change the name of the class from Class1 to a more descriptive name,
WebFileUtil.
public class WebFileUtil

Ensure that the program was passed the correct number of command-line arguments, and
then initialize the source and destination variables.

{
/'l Validate nunber of command-|ine arguments.
if(args.Length < 1 || args.Length > 3)
{
Di spl ayUsage() ;
return 1;

/1 Initialize vari abl es.

string source = args[1];

string destination = source;

if(args. Length == 3)
destination = args[2];
Next process the commands that were passed. The appropriate helper function will be called
for the DIR or GET command:
/1 Process command.
swi tch(args[0]. ToUpper())
{
case "DIR":
ListFiles();
br eak;
case "GET":
Get Fil e(source, destination);
br eak;
defaul t:
Di spl ayUsage() ;
br eak;

return O;
}

Next create a ListFiles method to output to the console the list of files available from the Web
service. To do this, create a WebDirectory object and a reference to an array of strings.

Then set the reference to the array of strings equal to the return value from the
WebDirectory.ListFiles method. Finally iterate through the array and write the name of each

file out to the console.
private static void ListFiles()

{
WebDi rectory webDi r = new WebDirectory();

string[] files;

files = webDir. ListFiles();
foreach(string file in files)

{
Console. WitelLine(file);

Console. WiteLine("\n{0} file(s) in directory.",
files.Length);

}

To create the GetFile method that will retrieve the requested file and save it to the file
system, you first create a new instance of the WebDirectory class and a reference to

WebFile. Then you call the GetFile method on the WebDirectory object to retrieve the
WebFile object. You open the destination file and use the stream class to write the byte
array to the file. Finally you set the date/time stamps for the file to the values contained
within the CreationTime, LastAccessTime, and LastWriteTime fields.

private static void GetFile(string source, string destination)
{

WebDi rectory webDi r = new WebDirectory();

WebFi | e webFil e = new WebFil e();

/'l Retrieve the requested file and then save it to disk.
webFile = webDir. GetFil e(source);

/1l Save the retrieved Wb file to the file system
FileStreamfs = File.OpenWite(destination);
fs.Wite(webFile.Contents, 0, webFile.Contents.Length);
fs.Close();

/] Set the date/tinme stanps for the file.

File. Set CreationTi me(destinati on, webFile.CreationTine);

Fil e. Set Last AccessTi ne(desti nati on, webFile.LastAccessTi ne);
File.SetLastWiteTi me(destination, webFile.LastWiteTine);

}

Finally you create a DisplayUsage method to write the proper syntax for WebFileUtil to the
console.

private static void DisplayUsage()
{

Console. WiteLine("WebFile is used to retrieve files from
t he

WebDi rectory Web service.");

Consol e. WiteLine("\nUsage: WebFile command source
[destination]");

Consol e. WiteLine("\tcommand - Either DIR or GET.");
Consol e. WiteLine("\tsource - The nane of the file to
retrieve.");

Console. WiteLine("\tdestination - Optionally the nane of
t he

destination file.");

Consol e. Wi teLine("\ nExanples:");

Console. WiteLine("\tWebFile GET sonefil e. exe");
Console. WiteLine("\tWbFile GET somefile.exe c:\temp");

Consol e. WitelLine("\tWbFile GET sonefile. exe
c:\temp\ nyfile.exe");

}
}

Note that this example uses .NET types throughout. The Web service declared classes that
exposed methods with strongly typed parameters and return values. For example, the
WebFileShare Web service declared a WebFile struct. The client code uses the WebFile
struct as if it were a native .NET type even though the messages are passed between the
WebFileUtil client and the WebDirectory Web service in XML.

As a result, many of the rich features of Visual Studio .NET are available to the developer,
such as IntelliSense and the ability to catch type mismatch errors at compile time. For
example, the WebFile structure was available to the client with no loss in fidelity. If the client
attempts to set the LastAccessTime field to a string, an error would be generated at compile
time. This was accomplished because the WebFile structure was exposed in the WSDL file
that is automatically generated by the ASP.NET runtime. Visual Studio .NET uses the
information in the WSDL file to create a strongly typed proxy for the Web service.

As you might assume, the byte array had to be encoded in some fashion before it could be
included in an XML document. However, the .NET infrastructure handled all of the encoding
for you. The byte array was transformed into a Base-64-encoded string, placed into the
SOAP message, sent across the wire, and then decoded back into a byte array. (I will cover
Base-64 and other XML data types in Chapter 4.)

Summary

This chapter demonstrates how easy it is to create and consume Web services using Visual
Studio .NET. You create two Web services, one to validate a credit card and the other to
send and retrieve files.

The first example demonstrates the ease with which you can factor Web services into your
existing .NET applications. You are easily able to move the business logic for your Web
application and place it into its own Web service. The second example, in which you create a
Web service for receiving files, demonstrates the flexibility of Web services and the
robustness of the .NET Framework.

Almost all of the code you write in this chapter is related to business logic instead of building
infrastructure. The only code you write to expose methods as Web services is to decorate
the method with the WebMethod attribute. The ASP.NET framework handled decoding the
request message from the client and encoding the response message.

Microsoft .NET provides many services for the client as well. Visual Studio .NET
automatically generates a proxy from the Web service’s WSDL document. You can think of
the WSDL document as the Web services equivalent to a COM TypeLib. It contains
information about the properties, methods, and enumerations exposed by the Web service.

The Visual Studio .NET-generated proxy allows you to code against the Web service as if it
were another strongly typed .NET object. One of the primary advantages of strong typing is
that type mismatch errors can be caught at compile time instead of at run time. Another
advantage is IntelliSense. As you code against the Visual Studio .NET-generated proxy
object, IntelliSense displays the list of methods exposed by the Web service. Once a method
is selected, IntelliSense displays the names and the types of each parameter within the
method.

In subsequent chapters, you will learn about the protocols that Web services are built on,
such as WSDL and SOAP, and about the .NET technologies such as ASP.NET that you can

use to build and consume Web services.

Chapter 3: SOAP

Overview

At the core of Web services is Simple Object Access Protocol (SOAP), which provides a
standard way of packaging messages. SOAP has received a lot of attention because it
facilitates RPC-style communication between a client and a remote server. But plenty of
protocols have been created to facilitate communication between two applications—
including Sun’s RPC, Microsoft's DCE, JAVA's RMI, and CORBA’s ORPC. So why is SOAP
getting so much attention?

One of the primary reasons is that SOAP has incredible industry support. SOAP is the first
protocol of its kind to be accepted by practically every major software company in the world.
Companies that rarely cooperate with each other are rallying around this protocol. Some of
the major companies that are supporting SOAP include Microsoft, IBM, Sun Microsystems,
SAP, and Ariba.

Here are some of the advantages of SOAP:

" It is not tightly coupled to one language. Developers involved with new projects
can choose to develop in today’s latest and greatest programming language. But
developers who are responsible for maintaining legacy applications might not have a
choice about the programming language they use. SOAP does not specify an API, so
the implementation of the API is left up to the programming language (such as Java)
and the platform (such as Microsoft .NET).

" It is not tightly coupled to a particular transport protocol. The SOAP specification
does describe how SOAP messages should be bound to HTTP. But a SOAP message
is nothing more than an XML document, so it can be transported over any protocol that
is capable of transmitting text.

= It is not tied to any one distributed object infrastructure. Most distributed object
systems can be extended (and some of them are) to support SOAP. It is important to
realize that even with SOAP, middleware such as COM+ still plays an important role in
the enterprise. Component middleware is still responsible for some of the more
advanced object management features such as object lifetime management,
transactions, object pooling, and resource pooling. SOAP enables a degree of
interoperability between different systems that are running component middleware from
competing vendors.

. It leverages existing industry standards. The primary contributors to the SOAP
specification intentionally avoided reinventing anything. They opted to extend existing
standards to meet their needs. For example, SOAP leverages XML for encoding
messages. Instead of using its own type system, SOAP leverages the type definitions
already defined within the XML Schema specification. And as | have mentioned, SOAP
does not define a means of transporting the message; SOAP messages can be bound
to existing transport protocols such as HTTP and SMTP.

. It enables interoperability across multiple environments. SOAP was built on top of
existing industry standards, so applications running on platforms that support these
standards can effectively communicate via SOAP messages with applications running
on other platforms. For example, a desktop application running on a PC can effectively
communicate with a back-end application running on a mainframe that is capable of
sending and receiving XML over HTTP.

This chapter covers the following key aspects of the SOAP specification:

" The SOAP envelope. This is used to encode header information about the message
and the body of the message itself.

. SOAP Encoding. This is a standard way of serializing data into the body of a SOAP
message.

] RPC-style messages. | discuss the protocol you can use to facilitate procedure-
oriented communication via request/response message patterns.

] The HTTP POST protocol binding. This is the standard method of binding SOAP
messages to HTTP.

Before | go any further, | want to discuss the status of SOAP. This chapter was written
against version 1.1 of the SOAP specification (http://www.w3.0rg/TR/SOAP). The World
Wide Web Consortium (W3C) is continuing to develop SOAP. On July 9, 2001, a working
draft of SOAP 1.2 was published (ttp://www.w3.0rg/TR/2001/WD-s0ap12-20010709) by
the XML Protocol Working Group.

As an acknowledgment of the phenomenal industry support that SOAP enjoys, the XML
Protocol Working Group is committed to maintaining a smooth migration path from SOAP
1.1 to SOAP 1.2. Many of the proposed modifications are fit-and-finish and do not radically
alter the use of SOAP. Much of what you have learned about SOAP 1.1 will directly translate
to SOAP 1.2.

In addition, the majority of the Microsoft products that incorporate SOAP will likely not adopt
SOAP 1.2 until it becomes an official W3C recommendation. Therefore, | recommend that
you focus on learning the SOAP 1.1 protocol with an eye on the deltas in version 1.2.

Anatomy of a SOAP Message

SOAP provides a standard way of packaging a message. A SOAP message is composed of
an envelope that contains the body of the message and any header information used to
describe the message. Here is an example:

I “Taml verslon="1.07* [

£spap:Envelope xAlntrsoape"kttp: /M schemas, am| 4000 . arglooap/enve]l ope/

<soap: Header:
Ll==0ptione]l header informaticon goes Rere. =-3
ToxScott</Tor
<From>Suzamned/ From:>

£ fuoap Hepders

< anap : Radyd

€1 --Message goes here. --»

Pleaze pick up some milk on your way Rome From work.
Lfsoapibodyr

£l spap: Envelapelr

The root element of the document is the Envelope element. The example contains two
subelements, the Body and Header elements. A valid SOAP message can also contain other
child elements within the envelope. You will see examples of this when | discuss serializing
references using SOAP Encoding.

The envelope can contain an optional Header element, which contains information about the
message. In the preceding example, the header contains two elements describing the
individual who composed the message and the intended recipient of the message. (I
describe the SOAP header in more detail later in the chapter.)

The envelope must contain one Body element. The body contains the message payload. In
my example, the body contains a simple character string.

Notice that each SOAP-specific element has the soap namespace prefix. This prefix is
defined within the Envelope element and points to the SOAP schema that describes the
structure of a SOAP message. The prefix is appended to any elements defined within the

SOAP namespace. These elements are fully qualified. The soap prefix indicates that the
Envelope element is an instance of the SOAP Envelope type. | will drill deeper into XML

namespaces in the next chapter.
SOAP Actors

Before | describe the individual parts of a SOAP message, | want to define a couple of terms
I will be using. A SOAP actor is anything that acts on the content of the SOAP message.

There are two types of SOAP actors, default actors and intermediaries.

The default actor is the intended final recipient of a SOAP message. An intermediary
receives a SOAP message and might act on the message (including modifying it in some
way) before forwarding it along the intended message path, as shown in the following
diagram. Even though intermediaries might modify the data transferred from the client to the
default actor, it is still considered the same message.

Dottt |
Bphowr

Claeed | Inermadiary = Ingarroacauy

The Header Element

The optional Header element is used to pass data that might not be appropriate to encode in
the body. For example, if the default actor receives a message in which the body is
compressed, the default actar would need to know what type of compression algorithm was
used in order to uncompress the message. Embedding information about the compression
algorithm into the body does not make sense because the body itself will be compressed.
Placing this type of information in the header of the message is more appropriate.

Other uses for the header include the following:

] Authentication. The recipient might require the sender to authenticate himself before
the message can be processed.

] Security digest information. If the recipient needs assurance that the contents of the
message have not been tampered with, the sender can digitally sign the message body
and place the resulting digest into the header.

] Routing information. If the message needs to be routed to many destinations, the
destinations and their order can be included in the header.

. Transactions. The recipient might have to perform some action in the scope of the
sender’s transaction.

] Payment information. If the recipient of the message provides services to the client
based on a per-usage fee, information necessary for collecting payment can be
embedded in the header.

The Header element can be added as an immediate child element within the SOAP

Envelope. The header entries appear as child nodes within the SOAP Header element. Here
is an example:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ " >

<soap: Header >
<Di gest >B839D234A3F87</ Di gest >
</ soap: Header >

<soap: Body>
<St ockReport >
<Synbol >MSFT</ Synhol >
<Price>74.56</Price>
</ St ockReport >
</ soap: Body>
</ soap: Envel ope>

The SOAP message contains a Digest element in the header that the remote application can
use to ensure that the message has not been tampered with. If the client is doing a routine
check to see what her stock closed at, she might not be concerned about validating the
message. But if the price of the stock triggers an event within the financial software package,
she might be more interested in validating the message. For example, it would be
unfortunate if the financial software package were to automatically liquidate her portfolio as
the result of receiving a bogus message sent by some 14-year-old kid.

mustUnderstand Attribute

Because headers are optional, the recipient of the message can choose to ignore them.
However, some information that can be embedded in the header should not be ignored by
the intended recipient. If the header is not understood or cannot be handled properly, the
application might not function properly. Therefore, you need a way to distinguish between
header information that is informative and header information that is critical.

You can specify whether the message recipient must understand an element in the header
by specifying the mustUnderstand attribute with a value of 1 in the root of the header
element. For example, the SOAP message might request that a remote application perform
an action on the client’s behalf. The following example updates a user’s account information
within the scope of a transaction:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<soap: Header >
<Transactionl d soap: nust Under st and="1">123</ Transacti onl d>
</ soap: Header >
<soap: Body>
<Updat eAccount | nf o>
<emai | >sshort @i crosoft. conk/ enni | >
<firstName>Scott</firstName>
<l ast Name>Short </ | ast Nane>
</ Updat eAccount | nf o>
</ soap: Body>

</ soap: Envel ope>

The recipient of the message must update the user’s account information within the scope of

the client’s transaction. If the transaction is aborted, the remote application must roll back the
requested changes to the user’s account information. Therefore, | encoded the transaction

ID within the header and set the mustUnderstand attribute to 1. The remote application must
either honor the transaction or not process the message.

actor Attribute

A SOAP message can be routed through many intermediaries before it reaches its final
destination. For example, the previous document might be routed through an intermediary
responsible for creating a transaction context. In this case, you might want to clearly specify
that the Transactionld header is intended to be processed by the transaction intermediary
rather than by the default actor.

The SOAP specification provides the actor attribute for annotating SOAP headers intended
for certain intermediaries. The value of this attribute is the Uniform Resource Identifier (URI)

of the intermediary for which the portion of the message is intended. If a header is intended
to be processed by the next intermediary to receive the SOAP message, the actor attribute

can be set to http://schemas.xmlsoap.org/soap/actor/next. Otherwise the actor attribute can

be set to a URI that identifies a specific intermediary. Here is an example:
<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xml soap. or g/ soap/ envel ope/ " >

<soap: Header >
<Transactionl d soap: nust Under st and="1"
actor="urn: Transacti onCoor di nat or >123</ Transacti onl d>

</ soap: Header >
<soap: Body>
<Tr ansf er Funds>
<Sour ce>804039836</ Sour ce>
<Desti nati on>804039836</ Dest i nati on>
<Anpunt >151. 43</ Anount >

</ Get Weat her >
</ soap: Body>
</ soap: Envel ope>

Because the Transactionld header element is intended for the transaction coordinator
intermediary, its actor attribute is set to the intermediary’s URI. The mustUnderstand
attribute has also been set so that if the transaction coordinator intermediary does not
understand the Transactionld header element, it must raise an error.

If the message is passed to another recipient, any header elements designated for the
intermediary must be removed before the message is forwarded. The intermediary can,
however, add additional header elements before forwarding the message to the next
recipient. In this example, the transaction coordinator intermediary must remove the router
element before forwarding it to the billing application.

One important point to note is that routing the message directly to the default actor is not
considered an error. Setting the mustUnderstand attribute to 1 in combination with setting
the actor attribute to urn:TransactionCoordinator does not ensure that the message will be
routed through the intermediary. It means only that if the message does reach the
transaction coordinator intermediary, it must comprehend the Transactionld header entry or
throw an error.

4

In the preceding example, the intermediary needs to perform a critical task before the
message is routed to the default actor. Recall that if the message does reach the transaction
coordinator intermediary, it must remove the Transactionld header before forwarding the
message. Therefore, the default actor can check to see whether the Transactionld header
exists, which would indicate that the message was not passed through its appropriate
intermediaries. However, determining whether all of the headers were processed after the
message reached the default actor is not always ideal. What if the SOAP request needs to
be routed through the intermediaries shown here?

Transaction
Coondinalor

> Transiar

Routar Funds

Y

The request to transfer funds must pass through a router intermediary before the funds are
transferred. Suppose the router charges the customer a processing fee for forwarding the
request to the appropriate banking Web service. However, before funds are deducted, the
message should be routed through the transaction coordinator to initiate a transaction before
any data is modified. Therefore the router intermediary and the default actor should perform
all work in the scope of the transaction. Because the banking Web service is the default
actor, it can check the headers to see whether the message was routed through the
necessary intermediaries.

But what if the banking Web service discovers that the message was never routed through
the transaction manager intermediary? If an error occurred during the funds transfer, you
might not be able to undo the work performed by the router intermediary. Worse yet, the
SOAP message might have been routed through the router intermediary before being routed
through the transaction coordinator. If this is the case, there might be no way to tell that the
procurement application performed its work outside the scope of the transaction.
Unfortunately, SOAP does not provide any mechanism to ensure that the message travels
through all intended intermediaries in the proper order. In the “Eutures” chapter, | will discuss
one of the emerging protocols for addressing this problem.

The Body Element

A valid SOAP message must have one Body element. The body contains the payload of the
message. There are no restrictions on how the body can be encoded. The message can be
a simple string of characters, an encoded byte array, or XML. The only requirement is that

the contents cannot have any characters that would invalidate the resulting XML document.

The SOAP specification describes a method of encoding that can be used to serialize the
data into the message’s body. It is a good idea to conform to an established encoding
scheme such as this because it allows the sender to more easily interoperate with the
recipient using a well-known set of serialization rules. (I describe this encoding method later
in the chapter.)

SOAP messages can generally be placed into two categories: procedure- oriented
messages and document-oriented messages. Procedure-oriented messages provide two-
way communication and are commonly referred to as remote procedure call (RPC)
messages. The body of an RPC message contains information about the requested action
from the server and any input and output parameters. Document-oriented messages
generally facilitate one-way communication. Business documents such as purchase orders
are examples of document-oriented messages. Let’s take a closer look at each of these
document types.

Two SOAP messages are paired together to facilitate an RPC method call with SOAP: the
request message and the corresponding response message. Information about the targeted

method along with any input parameters is passed to the server via a request message. The
server then invokes some behavior on behalf of the client and returns the results and any
return parameters. Most of the examples in this chapter relate to RPC method invocations,
and they all follow the SOAP specification’s guidelines for encoding RPC messages.

A business document such as a purchase order or an invoice can be encoded within the
body of a SOAP message and routed to its intended recipient. The recipient of the document
might or might not send an acknowledgment message back to the sender. (The “SOAP
Encoding” section later in this chapter describes how to use serialization rules to encode the

data contained within these business documents.) Because business documents often span
across multiple companies, organizations such as BizTalk.org and RosettaNet serve as
facilitators and repositories for schemas that define common document exchanges.

Later in the book, | will describe how to leverage the .NET platform to create and consume
both RPC and document-oriented messages.

Fault Element

Everything does not always go as planned. Sometimes the server will encounter an error
while processing the client's message. SOAP provides a standard way of communicating
error messages back to the client.

Regardless of which encoding style was used to create the message, the SOAP

specification mandates the format for error reporting. The body of the message must contain
a Fault element with the following structure:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ ">

<soap: Body>
<soap: Faul t >
<soap: faul tcode>Cli ent. Security</soap: faul tcode>
<soap: faul tstring>Access deni ed. </ soap: faul tstring>
<soap: faul tactor>http://abc. conk/ soap: faul tact or >
<soap: detail >
<MyError>
<Originator>File Systenx/COriginator>
<Resour ce>MySecur eFi | e. t xt </ Resour ce>
</ WyError>
</ soap: detail >
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

The fault code contains a value that is used to programmatically determine the nature of the
error. The SOAP specification defines a set of fault codes that you can use to describe basic
SOAP errors. The fault codes are listed in Table 3-1.

Table 3-1: Base SOAP Fault Codes

Fault Code Description

VersionMismatch An invalid namespace for the SOAP envelope element was
specified.

MustUnderstand An immediate child element within the SOAP header containing a

mustUnderstand attribute set to 1 was either not understood or not
obeyed by the server.

Client The content of the message was found to be the root cause of the
error. Possible root causes of errors resulting in a Client fault code
include a malformed message or incomplete information in the
message.

Server The root cause of the error was not directly attributable to the
content of the message. Examples of errors resulting in a Server
fault code include the server not being able to obtain the appropriate
resources (such as a database connection) to process the message
or a logical error during the processing of the message.

You can append more specific fault codes to the core SOAP fault codes listed in the table by

using the “dot” notation and ordering the individual fault codes from least specific to most
specific. For example, if the server is unable to open a database connection that is required
to process the client’s message, the following fault code might be generated:

<faul t code>Ser ver. Dat abase. Connecti on</faul t code>

Because the error was not the direct result of the client’'s message, the base fault code is

Server. A more descriptive fault code is appended to the end of the base fault code. In my
example, | define a category of codes for the database and a fault code specific to

connection-related errors.

The faultstring element should contain a human-readable string that describes the error
encountered. Here is a faultstring value for the error connecting to the database:

<faul tstring>Unable to open connection to the
dat abase. </faul tstring>

You can use the optional faultactor element to indicate the exact source of the error. The
only exception is if an intermediary generated the error. If the error was generated at any

point other than the final recipient of the SOAP message, the faultactor element must
contain a URI that identifies the source of the error. Otherwise, the URI can be omitted.

Using SOAP RPC Messages

One of the original design goals of SOAP was to provide an open and standard way to
facilitate RPCs using Internet technologies such as XML and HTTP. In this section, | explain
the method of encoding RPG-style messages described in version 1.1 of the SOAP
specification.

As | stated earlier in the chapter, the SOAP specification does not dictate the way messages
should be encoded, and encoding RPC-style messages is no exception. Section 7 of the
SOAP 1.1 specification describes the recommended way to encode the request and
response messages. The developer is free to create her own method of encoding RPC
communication. In this section, however, | limit the discussion to the “standard” method of
encoding RPC-style SOAP messages.

To facilitate the request/response behavior needed by RPC, you need two SOAP messages:
one for the request and one for the response. Here is how the request message would be

encoded for a simple C# function that adds two numbers:
public int Add(int x, int y)
{

return x +vy;

}

The Add method accepts two integers as input parameters and passes the result back to the
client as a return parameter. The input parameters must be packaged within the body of the
request message so that they can be sent to the target application. This is accomplished by
packaging the parameters in a struct-like format. Here is the resulting request message for
Add(1, 2):

<?xm version="1.0"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<soap: Body>
<Add>
<x>1</ x>
<y>2</y>
</ Add>
</ soap: Body>
</ soap: Envel ope>

The Body element contains an Add element. Each of the input parameters is represented as
a subelement within the Add element. The order of the x and y elements must match the

order in which the parameters are specified in the method signature. In other words, placing
y before x would be invalid. Furthermore, the names and the types of the Add, x, and y
elements must be the same as the target method and its parameters. | will explain data

typing in the next chapter. For now, suffice it to say that the body of the request message
must be in a format expected by the remote application.

Now that | have created a properly formatted request message, take a look at the response
generated by the remote application:

<?xm version="1.0"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<soap: Body>
<AddResul t >
<result>1</resul t>
</ AddResul t >
</ soap: Body>
</ soap: Envel ope>

The response message returned by the remote application contains the result of the Add
method. The return parameter is once again encoded in a struct-like format within the body
of the SOAP message. The naming convention of the subelement within the body is the
name of the method with Result appended to it. However, this naming convention is not

dictated by the specification. The first (and in this case, only) parameter contains the return
parameter of the method call. As with the AddResult element, the name of the element that

contains the return parameter is not dictated by the specification.

What if more than one parameter is returned to the client? Let’s take a look at a slight
variation of the Add method. Add2 returns the sum of the two numbers via an output
parameter.

public int Add2(int x, int y, out int sum
{

sum = X + y;

return sum

}

Calling Add2(1, 2) produces the following SOAP message:
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<soap: Body>
<Add2>
<x>1</ x>
<y>2</y>
</ Add2>
</ soap: Body>
</ soap: Envel ope>

Notice that the third parameter, sum, does not get encoded. Because sum is declared as an
output parameter, there is no reason to send its initial value to the remote application. Here
is the response:

<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xml soap. or g/ soap/ envel ope/ ">

<soap: Body>
<Add2Response>
<Add2Resul t >3</ Add2Resul t >
<sune3</ sune
</ Add2Response>
</ soap: Body>
</ soap: Envel ope>

The response message contains the value of two parameters. As | mentioned earlier, the

return parameter must always be listed first. | called the element containing the return
parameter Add2Result to demonstrate that the name is not relevant. The value of the sum
parameter is listed next.

SOAP Encoding

SOAP Encoding defines the way data can be serialized within a SOAP message. SOAP
Encoding builds on the types defined in the XML specification, which defines a standard way
of encoding data within an XML document. SOAP Encoding clarifies how data should be
encoded and covers items not explicitly covered in the XML specification, such as arrays
and how to properly encode references.

Simple Types

Simple types include strings, integers, date/time, Booleans, and so on. The SOAP
specification defers to the “Built-in datatypes” section of the “XML Schema Part 2:
Datatypes” specification. | will talk about the XML built-in data types in the next chapter.

An instance of a data type is encoded as an XML element. For example, an integer called
Age would be encoded as follows:

<Age>31</ Age>

Note that for RPC messages, the name of the element must correlate with the name of the
parameter.

Compound Types

Often, it is not sufficient to pass simple types such as integers and strings as parameters;
you need to pass compound types such as structures or arrays. In this section, | explain how
SOAP Encoding handles compound types.

Structures

A structure is a collection of types that serve as a template for logically grouping data. For
example, let's say you need to create a function that calculates the volume of a rectangular
solid. Instead of passing the length, the width, and the height of the cube as separate
parameters, you can logically group the dimensional data into a RectSolid structure. Then
the method that calculates the volume of the solid can accept an instance of the RectSolid
structure. Here is an example:

public struct Rect Solid

{
public int |ength;
public int w dth;
public int height;
}

public int Cal cVolume(RectSolid r)

{
return (r.length * r.width * r.height);

}

First | define a structure that contains the dimensions of a solid. Then | define the area. A

request to calculate the volume of a rectangular solid that has a length of 2, a width of 3, and
a height of 1 can be encoded as follows:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xml soap. or g/ soap/ envel ope/ " >

<soap: Body>
<Cal cVol unme>
<r >
<l engt h>2</1 engt h>
<wi dt h>3</wi dt h>
<hei ght >1</ hei ght >
</r>
</ Cal cVol unme>
</ soap: Body>

</ soap: Envel ope>

As you can see, structures map nicely to XML. Each of the variables contained within the
instance of the RectSolid structure is serialized as a child element of r. As you will see in the
next chapter, this follows the method of encoding structues defined in Part 1 of the XML
specification.

Arrays

Another common compound data type is the array. As of this writing, the XML specification
does not specify how an array should be encoded. The SOAP 1.1 specification fills in the
gaps. Here is an example:

public int AddArray(int[] nunbers)

{
int total = 0;
foreach(int nunmber in nunbers)
{
total += nunber;
}
return total;
}

The AddArray method accepts an array of integers and returns the total. Here is how a client
can call the AddArray function:

int[] a={1, 2, 3};
int total;

total = AddArray(a);

The call to AddArray produces the following request message:
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schenmas. xn soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://

www. W3. or g/ 2001/ XM_LSchena- i nst ance" >
<soap: Body>
<AddArray>
<a soap-enc:arrayType="xsi:int[3]">
<int>1</int>
<i nt>2</int>
<i nt>3</int>
</ a>
</ AddAr r ay>
</ soap: Body>
</ soap: Envel ope>

The array is represented by a single element within the body tag. The element must contain
the soap-enc:arrayType attribute. The value of the attribute describes the contents of the
array and its dimensions. In the preceding example, xsi:int[3] specifies that the array
contains three integers. In the next chapter, | will describe XML Schema and type definitions
in more detail.

Each value in the array is listed as a subelement. The names of the subelements are not
relevant, but often the names of the elements within the array will correlate with the type of
data they contain.

SOAP-encoded arrays can contain different elements of different types. The following code
returns an array containing an integer, a float, and a string:

obj ect[] stuff = new object][3];

stuff[0] = (int)100;
stuff[1] = (float)2.456;
stuff[2] = (string)"Kitchen Sink";

Col | ect Thi ngs(stuff);

public void Coll ectThi ngs(object[] things)

{
11

}

An array of objects called stuff is created, and then values of three different types are
assigned to each of its three elements. The resulting response SOAP message is encoded
as follows:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schenas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://

www. W3. or g/ 2001/ XM_LSchena- i nst ance" >
<soap: Body>
<Col | ect Thi ngs>
<t hi ngs soap-enc:arrayType="xsi:ur-type[3]">
<obj ect >100</ obj ect >
<obj ect >2. 456</ obj ect >
<obj ect >Ki t chen Si nk</ obj ect >
</t hi ngs>
</ Col | ect Thi ngs>
</ soap: Body>
</ soap: Envel ope>

The things array is defined as type xsi:ur-type, which means that the elements can contain
data of any type. In the next chapter, you will learn how to declare the type of data in each
element.

The final two array types | will cover are multidimensional and jagged arrays.
Multidimensional arrays are rectangular by nature. You can think of a jagged array as an
array contained within an array. SOAP defines a method for encoding both types of arrays.
This example creates a multidimensional array:

/1 Create a block of seats 3 rows deep and 4 seats wi de.
string[,] seats = new string[3, 4];

for(int i =0; i < 2; i+4)
{
for(int j =0; i < 2; j++)
{
seats[i, j] = string. Format("row {0}, seat {1}");
}

Pri nt Seat Label s(seats);

public void PrintSeatLabel s(string[,] |abels)

{
11

}

A multidimensional array of labels is created, and then the array is passed to
PrintSeatLabels. The resulting message is encoded as follows:.

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schems. xnl soap. or g/ soap/ encodi ng/"
xm ns: xsi="http://
www. W3. or g/ 2001/ XMLSchene- i nst ance" >
<soap: Body>
<Pri nt Seat Label s soap-enc:arrayType="xsi:string[3,4]">
<seat s>
<string>row 1, seat 1</string>
<string>row 1, seat 2</string>
<string>ow 1, seat 3</string>
<string>row 1, seat 4</string>
, seat 1</string>

<string>row

1
1
1
<string>row 2
2, seat 2</string>
2

<string>row 2, seat 3</string>
<string>row 2, seat 4</string>
<string>row 3, seat 1</string>
<string>row 3, seat 2</string>
<string>row 3, seat 3</string>
<string>row 3, seat 4</string>

</ seat s>

</ Pri nt Seat Label s>
</ soap: Body>
</ soap: Envel ope>

As you can see, the values of the right-side element change more rapidly than those of the
left-side element. Because the seat is the rightmost element, all of the seats for a particular
row are encoded before the loop moves on to the next row.

In a jagged array, which you can think of as an array of arrays, each element can contain an
array of varying lengths. Here is an example:

string[][] teans = new string[3][];

teams[0] = new string[3];

teams[0] [0] = "Bob";
teans[0][1] = "Sue";
teams[0][2] = "M ke";

teams[1] = new string[2];
teans[1][0] = "Jane";
teams[1][1] = "Mark";

teams[2] = new String[4];

teans[2][0] = "Mary";
teams[2][1] = "Jill";
teans[2][2] = "Jint;
teams[2][3] = "Tonm';

Regi st er Teans(t eans) ;

public void RegisterTeanms(string[][] teans)

{
/1

}

The RegisterTeams function accepts a list of teams. Because teams can vary in the number
of players, a two-dimensional jagged array of strings is passed to the function. Each element

of the array represents a team and contains an array of player names on that team. Here is
how the jagged array is encoded:

<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://

www. W3. or g/ 2001/ XM_LSchena- i nst ance" >
<soap: Body>
<Regi st er Teans>
<t eans soap-enc:arrayType="xsi:string[3]">

<t eam soap-enc: arrayType="xsi:string[3]">
<pl ayer >Bob</ pl ayer >
<pl ayer >Sue</ pl ayer >
<pl ayer >M ke</ pl ayer >

</teanr

<t eam soap-enc: arrayType="xsi:string[2]">
<pl ayer >Jane</ pl ayer >
<pl ayer >Mar k</ pl ayer >

</teanr

<t eam soap-enc: arrayType="xsi:string[4]">
<pl ayer >Mar y</ pl ayer >
<pl ayer>Jil | </ pl ayer >
<pl ayer >Ji nx/ pl ayer >
<pl ayer >Tonx/ pl ayer >

</teanr

</t eans>

</ Regi st er Teans>
</ soap: Body>

</ soap: Envel ope>

Consistent with the array encoding rules | discussed earlier, the name of the individual
elements is not important. For clarity, | named each element in the teams array team and
named each element in the team array player. In jagged arrays, not only does the teams
element contain a soap-enc:arrayType attribute, but each of the elements within the array of
teams contains a soap- enc:arrayType attribute as well.

Optimization

In some cases, you might not want to encode the entire array in the body of the message.
The SOAP 1.1 specification describes two ways to encode part of an array: partial arrays
and sparse arrays. A partial array encodes a select range of elements in the array. A sparse
array encodes select elements scattered throughout the array.

Let's say you create an array that can hold the names of up to 1000 registrants for an
upcoming event. Periodically, the list of attendees needs to be sent to various interested
parties. Soon after the event has been announced, there might be only 5 people registered.
If you send the list of registrants, it is not very efficient to encode all 1000 elements because
only the first 5 will contain values:

/'l Create an array of attendees, record the first five,
/1 and then pass the array to Regi steredAttendees.
string[] attendees[1000];

attendees[0] = "Bill dinton";
attendees[1] = "Jimmy Carter";
attendees[2] = "Ronald Reagan';
attendees[3] = "George Bush";
attendees[4] = "Al Gore";

Regi st er edAtt endees(att endees);

public void RegisteredAttendees(string[] attendees)

{
/1

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope

xm ns: soap="http://schemas. xnml soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schenas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://

www. W3. or g/ 2001/ XM_LSchena- i nst ance" >
<soap: Body>
<Regi st er edAt t endees>
<attendees soap-enc: arrayType="xsi:string[1000]">
<string>Bill Clinton</string>
<string>Jimmy Carter</string>
<string>Ronal d Reagan</string>
<string>George Bush</string>
<string>Al Gore</string>
</ attendees>
</ Regi st eredAtt endees>
</ soap: Body>
</ soap: Envel ope>
As you can see in the resulting message, the soap-enc:arrayType attribute indicates that the
array contains 1000 elements even though only the first 5 were encoded. If you want to
encode a portion of the array that does not start with the first element, you can specify the
starting element by using the soap- enc:offset attribute. For example, if you want to encode

the next five attendees that registered for the event, the resulting message would be as
follows:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schems. xnl soap. or g/ soap/ encodi ng/ "
xm ns: xsi="http://

www. W3. or g/ 2001/ XM_Schena- i nst ance" >
<soap: Body>
<Regi st er edAt t endees>
<attendees soap-enc:arrayType="xsi:string[1000]"
soap-enc: of fset="[5]">
<string>Cerald Ford</string>
<string>George W Bush</string>
<string>Di ck Cheney</string>
<string>Wal ter Mondal e</string>
<string>Dan Quayl e</string>
</ attendees>
</ Regi st er edAtt endees>
</ soap: Body>

</ soap: Envel ope>

As you can see, the soap-enc:offset element specifies that the array has been offset by five.
Therefore, the contents of the array contain the sixth through the tenth elements.

What if the elements to be encoded within the array are not adjacent to each other? Another
means of partially encoding arrays is to use the sparse array syntax. For example, say you

want to create a message that contains the names of all the registered attendees that did not
show up for the event. The ordinal of each attendee has significance, so you are once again
creating 1000 elements in an array and populating only a subset of the elements with data.

This time, the data will not be located in a sequential set of elements. Instead, it will be
contained in elements throughout the array. You can solve this problem by encoding an
array of no-shows by using the sparse array syntax. Here is the resulting message:

<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schenas. xn soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://

www. W3. or g/ 2001/ XM_LSchena- i nst ance" >
<soap: Body>
<NoShows >
<regi strants soap-enc:arrayType="xsi:string[1000]">
<string soap-enc: position="[10]">Dan Quayl e</string>
<string soap-enc:position="[231]">Newt G ngrich</string>
<string soap-enc:position="[357]">Trent Lott</string>
<string soap-enc:position="[842]">Hi |l ary Rodham Cl i nton
</string>
</registrants>
</ NoShows >
</ soap: Body>

</ soap: Envel ope>

Once again, the soap-enc:arrayType attribute is used to specify that the array contains a

total of 1000 elements. However, the elements that contan data are the only ones encoded
within the SOAP message. Because the position of the element within the array is relevant,

the soap-enc:position attribute is used to indicate where the element resides within the array.

Passing Parameters by Reference

Up to this point, | have been explaining how to encode parameters that are passed by value
to a Web service. But it is often necessary to pass parameters by reference. For example, a

client might pass information about a customer to the server so that the server can update
the information on behalf of the client. If the client structure were passed by value, changes
made to the client’s information would not be visible to the client.

Let's take a look at how parameters that are passed by reference are encoded in a SOAP
message. In the first example, | create a series of Fibonacci numbers. A number in a

Fibonacci series is determined by adding the two numbers directly preceding it. For
example,ifnl=1andn2=1,thenn3=1+1=2and 4 =1 + 2 = 3. Here is the method |
use to output a series of Fibonacci numbers:

public void Fibonaccilncrenent(ref int nl, ref int n2)

{

int temp = n2;

/] Set nl1 and n2 to the next two Fi bonacci nunbers.
nl += n2;
n2 = tenp + nl;

/1l The follow ng code prints the foll owi ng out put:
/71, 1, 2, 3, 5, 8, 13, 21, 34, 55

int x = 1;

int y = 1;

for(int i =1, i <11, i += 2)
{

Console. Wite("{0}, {1}", x, y);
Fi bonacci I ncrenment (x, y);

}

Fibonaccilncrement accepts the last two numbers and then returns the next two numbers in

the series. Here are the request and response messages for the first call to
Fibonaccilncrement:

<l -- Request Message -->
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnml soap. or g/ soap/ envel ope/ " >

<soap: Body>
<Fi bonacci | ncr enent >
<nl>1</n1>
<n2>1</ n2>
</ Fi bonacci | ncr enent >
</ soap: Body>
</ soap: Envel ope>

<l -- Request Message -->
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >

<soap: Body>
<Fi bonacci | ncr ement Response>
<nl1>2</ni1>

<n2>3</ n2>

</ Fi bonacci | ncr enent Response>
</ soap: Body>

</ soap: Envel ope>

There is nothing surprising about the first message. The two parameters are encoded as
usual. What distinguishes a parameter passed by reference from one that is passed by value
is that the client needs to be notified of any changes to the value. Therefore, the new values
of n1 and n2 are encoded in the response message. Notice that | also follow the convention
of appending Response to the method element within the body.

Another reason for passing parameters by reference is to maintain the identity of the variable
being passed. Consider the following example:

/'l Server Code:

public struct Person

{
public doubl e Hei ght ;
public int Wei ght ;
public int Age;
public string Hobby;
}

public string Introduce(ref Person pl, ref Person p2)

{

string result ="";

/1 Do pl and p2 reference the sanme variabl e?
i f(pl. Ref erenceEqual s(p2))
{

t hrow new Exception("Can’t introduce to self.");

/'l Are pl and p2 equal in value?
i f(pl. Equal s(p2))

{
result = "We have a lot in compn!"”;
}
el se
{
result = "Nice to nmeet you.";
}

return result;

/1 Cient Code:
Person p = new Person();

p. Height = 5.7;
p. Wei ght = 150;
p. Age = 31,

p. Hobby = "Skiing";

/1l Attenpt to introduce a person to hinself.

Introduce(ref p, ref p);

The Introduce method accepts two references to variables of type Person. This is similar to

passing two integers by reference to Fibonaccilncrement. However, unlike
Fibonaccilncrement, the Introduce method behaves differently depending on whether the

two parameters are equal or identical (point to the same instance of Person).

The way | encode the parameters passed by reference in the Fibonacci example is not
sufficient for the Introduce method because it does not maintain the identity of the
parameters. SOAP provides the id/href pattern for maintaining the identity of the parameters.
Here is how the call to Introduce would be encoded:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schemas. xm soap. or g/ soap/ encodi ng/ " >
<soap: Body>

<I ntroduce>
<pl soap-enc: href="#refl1"/>
<p2 soap-enc: href="#ref1"/>

</ I ntroduce>

<Person soap-enc:id="refl">
<Hei ght >5. 7</ Hei ght >
<Wei ght >150</ Wi ght >
<Age>31</ Age>
<Hobby>Ski i ng</ Hobby>

</ Per son>

</ soap: Body>
</ soap: Envel ope>

The encoded parameters do not contain any data. Instead, because both parameters
reference the same instance of the Person type, the data is encoded once within the body of

the message. The root element of the parameter’s data is given a unique ID via the id
attribute.

Instead of containing data themselves, the parameters each refer to the element containing
the actual data. This is done by setting the parameter element’s href attribute equal to the 1D
of the element containing the data.

As you will see in later chapters, different .NET technologies have varying degrees of
support in the way they encode reference parameters. Hopefully, this section has shown
why you need to understand the degree to which encoding references are supported by the
technology underlying your application. This understanding can help you avoid unexpected

behavior within your application.
root Attribute
Sometimes, the root of a serialized object graph is not readily apparent within the resulting

SOAP message. Suppose you want to serialize the following object graph that shows the
relationships between Kevin Bacon and other actors:

Kavin
Bacon
Tom Wilkam
Cruise Bakdwin
Rabacca
Da Momay

The graph represents two paths from Kevin Bacon to Rebecca De Mornay. Rebecca De
Mornay was in the motion picture Risky Business (1983) with Tom Cruise, and Tom Cruise
was in A Few Good Men (1992) with Kevin Bacon. Rebecca De Mornay was also in
Backdraft (1991) with William Baldwin, and William Baldwin was in Flatliners (1990) with

Kevin Bacon. The next step is to serialize this data into the body of a SOAP message.

Once this object graph is serialized, you will no longer be able to distinguish which element
is the root element. For such cases, SOAP Encoding defines the root attribute. You can use
this attribute to distinguish serialization roots from other elements that are present in a
serialization but are not roots of a serialized value graph. The preceding object graph would
be serialized as you see here:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schems. xnl soap. or g/ soap/ encodi ng/"
xm ns: hw="urn: hol | ywood>
<soap: Body>

<Rel ati onsToKevi nBaconResul t >

<obj ect Graph soap-enc: href ="#actor 1"/ >
</ Rel ati onsToKevi nBaconResul t >

<Act or soap-enc:id="actorl" soap-enc:root="1">
<Nane>Kevi n Bacon</ Nane>
<Rel ati onshi ps soap-enc: arrayType="hw: Actor[2]">
<Act or soap-enc: href="actor2"/>
<Act or soap-enc: href="actor3"/>
</ Rel ati onshi ps>
</ Act or >

<Act or soap-enc:id="actor2">
<Name>Tom Cr ui se</ Nanme>
<Rel ati onshi ps soap-enc: arrayType="hw: Actor[2]">
<Act or soap-enc: href="actor1"/>
<Act or soap-enc: href="actor4"/>
</ Rel ati onshi ps>
</ Act or >

<Act or soap-enc:id="actor3">
<Name>W | | i am Bal dwi n</ Nane>
<Rel ati onshi ps soap-enc: arrayType="hw Actor[2]">
<Actor soap-enc: href="actor1"/>
<Act or soap-enc: href="actor4"/>
</ Rel ati onshi ps>
</ Act or >

<Actor soap-enc:id="actor4">
<Name>Rebecca De Mornay</ Name>
<Rel ati onshi ps soap-enc: arrayType="hw Actor[2]">
<Act or soap-enc: href="actor2"/>
<Act or soap-enc: href="actor3"/>
</ Rel ati onshi ps>
</ Act or >

</ soap: Body>

</ soap: Envel ope>

The root attribute identifies Kevin Bacon as the root in the object graph of actors. | could also
have optionally decorated nonroot objects with the root attribute and set it to 0.

Protocol Binding

You have learned how to properly encode a SOAP message, but you still need a way to
send the message to the remote application. One advantage of SOAP is that it is not tied to
a particular transport protocol. SOAP messages can be sent over any transport protocol that
is capable of carrying XML.

Arguably the most popular transport protocol used to send SOAP messages is HTTP.

However, SOAP messages can also be sent via SMTP, via fax, to a ship at sea via a
shortwave radio, or whatever else can be dreamed up.

How a SOAP message is carried by a particular transport protocol is known as the protocol
binding. A protocol binding can be defined to exploit any unique characteristics of the
transport protocol. As you will soon learn, the HTTP POST binding extends the protocol so
that HTTP-aware firewalls have the ability to filter SOAP messages.

The SOAP specification describes only one protocol binding: sending SOAP messages via
HTTP POST. Therefore, the only protocol binding | will discuss is HTTP POST.

Most SOAP implementations, including .NET, support the HTTP protocol. Because most
systems support HTTP, it has arguably become the protocol of choice for ensuring that a
Web service has a high degree of interoperability between different platforms. The
advantages of the HTTP protocol include the following:

" It is firewall friendly. Older protocols such as Distributed Component Object Model
(DCOM) are not. Most firewalls have port 80, at the very least, open for HTTP traffic.

. It has a robust supporting infrastructure. Many technologies have been introduced
in the effort to increase the scalability and availability of HTTP-based applications. | will
discuss this further in Chapter 12.

" It is inherently stateless. The stateless nature of HTTP helps ensure that
communication between the client and the server is reliable, especially across the
Internet. Intermittent dropped connections pose problems for protocols such as DCOM
and CORBA.

. It is simple. The HTTP protocol is composed of a header section and a body section.

. It maps nicely to RPGstyle message exchanges. HTTP is a natural protocol for
RPC-style communication because a request is always accompanied by a response.

" It is open. Practically every network-aware system supports HTTP.

An HTTP request is composed of two parts, a header and a body. The header contains
information about the request and about the client that sent the request. The body follows
the header and is delimited by two carriage-return/ linefeed pairs. The body contains the
payload, which in this case would be the SOAP message. Here is an example of an HTTP
request that contains a SOAP message:

POST / SomeWebService HTTP/ 1.1

Cont ent - Type: text/xm

SOAPAction: "http://somedonai n. com SoneWebSer vi ce. wsdl "
Content - Lengt h: 243

Host: sshort3

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soap-enc="http://schemas. xm soap. or g/ soap/ encodi ng/ " >
<soap: Body>
<Add>
<x>2</ x>
<y>2</y>
</ Add>
</ soap: Body>
</ soap: Envel ope>

The HTTP header for a SOAP message is similar to that for an HTML request, with a couple
of differences: The Content-Type header entry is always set to text/xml, and the body of the
message contains the SOAP message. The other difference is that every SOAP HTTP
POST request must contain a SOAPAction header entry.

The SOAPAction header entry is used to communicate the intent of the SOAP message.
The URI can be represented in any format and is not required to be resolvable. In my
example, the URI resolves to the Web Services Description Language (WSDL) document for
the Web service. | will cover WSDL in Chapter 5.

The value of the SOAPAction header can be blank if the intent of the SOAP message is
conveyed in the HTTP request header entry. The HTTP request is the first entry in the
header and contains the action (in this case, always POST) and the targeted URI. If the URI
in the HTTP request header entry adequately communicates the intent of the SOAP

message, either of the following entries would be valid:
SOAPAct i on:

SOAPAct i on:

The HTTP response is used to communicate the results of the SOAP request.
HTTP/ 1.1 200 OK

Server: Mcrosoft-11S/5.0

Date: Sun, 25 Mar 2001 19:44:55 GVI

Cont ent - Type: text/xm

Cont ent - Lengt h: 243

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnml soap. or g/ soap/ envel ope/ " >

<soap: Body>
<AddResponse>
<resul t>4</resul t>
</ AddResponse>
</ soap: Body>
</ soap: Envel ope>

Once again, the MIME type is set to text/xml. For RPC-style messages, the HTTP body
contains the SOAP response message. Otherwise, the HTTP body would be empty.

Because the example request message results in a response message being generated
from the server, the HTTP body contains the results.

In either case, the status reported in the first line of the HTTP header must contain a value
between 200 and 299. In the event of an error while processing the SOAP message, the
HTTP status must be 500, indicating that an internal server error occurred.

Summary

In this chapter, you learned about the underlying messaging protocol of Web services,

SOAP. Specifically, you learned about the following:

. The SOAP envelope. How itis used to encode header information about the
message and the body of the message itself

" SOAP Encoding. How data can be serialized into a SOAP message

" RPC messages. How RPC messages facilitate procedure-oriented communication via
request/response message patterns

. The HTTP POST protocol binding. How SOAP messages can be transported via
HTTP

You learned that, at a bare minimum, a SOAP message must be contained within a well-
formed SOAP envelope. An envelope is composed of a single Envelope element. The
envelope can contain a Header element and must contain a Body element. If present, the
header must be the immediate child element within the envelope, with the body immediately
following the header. The body contains the payload of the message, and the header
contains additional data that does not necessarily belong in the body of the message.

In addition to defining a SOAP envelope, the SOAP specification defines a way of encoding

the data contained within a message. SOAP Encoding provides a standard means of
serializing data types that are not defined within part 1 of the XML Schema specification.
This includes arrays and references to instances of data types.

The SOAP specification also provides a standard message pattern for facilitating RPC-style
behavior. Two SOAP messages are paired together to facilitate a request message and an

associated response.

The method call and its parameters are serialized in the body of the request message in the

form of a structure. The root element carries the same name as the targeted method, with
each inbound parameter encoded as a subelement.

The response message will either contain the results of the method call or a well-defined
fault structure. The results of the method call are serialized in the body of the request as a
structure. By convention, the root element carries the same name as the original method call
with Result appended to it. The return parameters are serialized as child elements, with the
return parameter appearing first. If an error is encountered, the body of the response
message will contain a well-defined fault structure.

Chapter 4: XML Schema

Overview

SOAP provides a standard method of encoding data into an XML document. This technology
is also extremely flexible. Anything can be encoded into the body of a SOAP message as
long as it does not invalidate the XML. The body of a message can contain a request for the
latest weather information, a purchase order, part of an instant message thread, a satellite
image, or whatever else the implementer of a Web service can dream up.

With the variety of content and types of data that can be contained within a SOAP message,
you need a way of expressing the structure of a message. You also need a way to determine
the type of data that should appear within a message.

One potential solution could be for the developer to provide a sample of what a valid SOAP
message should look like. For example, say you need to interface with a Web service to
place an order with a vendor, and the vendor has provided the following sample message:
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ " >

<soap: Body>
<Pur chasel t en»
<l temrAppl e</ It enp
<Quantity>12</ Quantity>
</ Pur chasel t en>
</ soap: Body>
</ soap: Envel ope>

The XML document is pretty straightforward. From the sample message, you can see that

the Web service accepts two parameters, Item and Quantity. Both of these parameters are
child elements of the Purchaseltem element.

The problem is that the sample message leaves a lot of ambiguity remaining. For example,
you know you need to pass an ltem parameter, but should it contain a short description of
the item? Should it contain one of a select number of enumerations? Is the value limited to a
maximum number of characters?

There are just as many questions regarding the Quantity parameter. Can you specify partial
guantities such as 1.5 cases? Is there a minimum number that must be purchased? Is there
a maximum number that can be purchased?

One way to clear up the ambiguity would be to have the sample message be accompanied
by a document that describes all of the nuances of the message because at the very least,
the Web service needs to validate the received message. Also, you would probably want to
validate the message before you sent it to the Web service. But with this approach, both you
and the developer of the Web service would probably be stuck hand-writing validation code.
This doesn’t sound very pleasant or productive.

What's needed is a standard way of describing the structure and the type of information that
should be contained within an XML message sent to the Web service. In other words, you
need a way of representing the schema an XML message must conform to in order to be

processed by the Web service. Furthermore, the schema needs to be standardized and
accompanied by a set of APIs that can be used to programmatically validate an XML

document against the schema.

By the end of this chapter, you will be armed with more than enough information to create
schemas for your Web services. In this chapter, | will create a schema for the Commerce
Web service. This schema will describe the expected format of the request and response
message of the Purchaseltem method.

Describing XML Documents

You can use a schema to describe the structure of an XML document and its type
information. The two dominant technologies for defining an XML schema are document type
definitions (DTDs) and XML Schema. You can use DTDs to define the structure of an XML
document but not to describe the contents of a document. Here is an example:

<l -- Request Message -->

<! ELEMENT Purchasel tem (Quantity, ltem>
<! ELEMENT Quantity (#PCDATA) >
<! ELEMENT |tem (#PCDATA) >

<! -- Response Message -->

<! El enment PurchaseltenResul t (Anpunt) >
<! ELEMENT Anpunt (#PCDATA) >

At first glance, it should be apparent that the DTD syntax is not XML- based. DTDs cannot
be parsed using XML parsers and cannot be easily embedded into other XML documents.

You will see why this is important for Web services when WSDL is discussed in the next

chapter.

DTDs do describe the structure of the document, but they cannot express the type of data it

contains. There is no notion of fundamental types within DTDs such as integers and strings,
nor is there support for defining your own types.

In the preceding example, both the Quantity and the Item elements are declared as
#PCDATA. This doesn't give you any insight into the type of data they can contain. For
example, the DTD doesn’t indicate whether it is valid to list partial quantities such as 1.5
cases. It also doesn't indicate whether the Iltem element should contain a numeric product ID
or just a string containing a description of the item.

A proposed standard submitted to the W3C called Datatypes for DTDs (DT4DTD) 1.0
(http://www.w3.0rg/TR/dt4dtd) provides a means of grafting type information into DTD
schemas. As of this writing, the proposal has been listed as a note for more than a year and
a half and does not appear to be gaining much traction. DTDs should be considered legacy
technology for defining XML schemas because of their limitations and lack of industry
support.

The recommended way to express schemas for XML-based Web services is via XML

Schema. XML Schema comprises two specifications managed by the W3C, XML Schema
Part 1. Structures (http://www.w3.org/TR/xmlschema-1/) and XML Schema Part 2: Datatypes
. -2/). As of May 2, 2001, both specifications are

recommendations of the W3C.

XML Schema provides a rich syntax for defining schemas used to validate XML instance
documents. It not only allows you to define the structure of an XML document, but it also

allows you to define the type of data the document contains and any constraints on that
data. Also, it lets you specify foreign key and referential integrity constraints. Here is a
simple example:

<?xm version='1.0" ?>
<schema xm ns='http://ww w3. org/ 2001/ XM_Schema’ >

<l -- Response Message (work-in-progress) -->

<el ement nanme=' Anount’ />

</ schema>

As you can see, the sample schema is a valid XML document that is capable of being

consumed by any standard XML parser. A schema definition is contained within a root
schema element. The example schema defines one element named Amount.

XML documents that can be validated against a schema are called instance documents. The
following is an instance document for the schema described previously:

<?xm version="1.0" ?>
<Anmpunt >351. 43</ Anpunt >

Built-In Datatypes

One of the more useful features of XML Schema is that it defines a core set of datatypes.
These include basic programming types such as string, int, float, and double; mathematical
types such as integer and decimal; and XML types such as NMTOKEN and IDREF.

One of the most significant advantages of the XML Schema type system is that it is
completely platform independent. Values of types are consistently represented no matter
what hardware, operating system, or XML processing software is used. The XML Schema
type system allows XML-based protocols such as SOAP to achieve strong interoperability in
heterogeneous computing environments.

Datatypes are useful for defining schemas that describe the type of data that must be
contained within a document. | will heavily leverage datatypes when | describe how to create
schemas later in this chapter. Another way that you can leverage the XML Schema type
system is by annotating an XML document with the type of data it contains. This helps
remove ambiguity about the intentions of the document'’s creator.

In the previous section, | created a SOAP message to submit a Purchaseltem request. Here,
I will use the built-in datatypes to indicate the types of the parameters being passed:
<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schenma-i nstance">
<soap: Body>
<Pur chasel t em>

<item xsi:type="xsi:string">Apple</itenr

<quantity xsi:type="xsi:int">1l</quantity>
</ Pur chasel t enm>
</ soap: Body>
</ soap: Envel ope>

| added an xsi:type attribute to each parameter element. The value of the attribute

represents the datatype of the encoded parameter. Decorating elements within an XML
document with type information removes all ambiguity regarding the type of data the sender
encoded into the message. The recipient of the preceding message will know that quantity is
represented as an int and item is represented as a string.

The SOAP specification defines a polymorphic accessor as an element whose type is
determined at run time. The polymorphic accessor is conceptually similar to the Object type
in Visual Basic .NET. If a polymorphic accessor appears within a SOAP message, it must
contain a type attribute indicating the type of data the element contains.

The Appendix provides a full list of XML Schema built-in datatypes. Note that SOAP 1.1 was
defined against a working draft of the XML Schema specification published in 1999. Some of
the built-in types have undergone name changes through the course of becoming a
recommendation. Even though the SOAP 1.1 specification and its related schemas
reference a previous version of the XML Schema, most SOAP implementations including
ASP.NET and Remoting reference the built-in datatypes defined by the curent XML Schema
specification.

In the remainder of this section, | cover a few of the more interesting datatypes.

Integers

The XML Schema language defines a number of types that are used to describe integers.
The two types that often get confused are integer and int. The int type is actually a derivative

of the integer type with additional restrictions.

Even though both int and integer represent an integer value, they serve different purposes.
Elements and attributes of type integer contain a value that meets the mathematical
definition of an integer. Numbers of type integer are boundless and therefore might contain
values that cause an overflow condition if copied into a CPU'’s register. Because elements
and attributes of type int are restricted to containing a 32-bit integer, they are better suited
for computer science applications.

The same distinction holds true for decimal numbers. Instances of the float type conform to

the Institute of Electrical and Electronics Engineers (IEEE) single-precision floating point
type. On the other hand, the decimal type represents an arbitrary precision decimal number.

Strings

XML Schema defines a string datatype, but it is not identical to the string type in many
database or programming languages. In particular, string types in many database and
programming languages allow characters that are forbidden to appear in the XML Schema
string datatype.

Characters that might invalidate or alter the meaning of the XML document cannot be
contained within an element or attribute of type string. For example, reserved characters
such as the less than and ampersand signs carry special meaning and cannot appear within
an XML document. Other characters such as quotation marks and apostrophes cannot

appear within the value of an attribute. These characters must be escaped or encoded in
some fashion before they can be serialized into an XML document.

XML defines a means of encoding individual characters within an XML document by using
character references. A character reference consists of an ampersand followed by a
character identifier and then a semicolon. The character identifier can be either the numeric
identifier of a Unicode character or a character entity reference.

A numeric character reference is used to identify a specific character in the Unicode
(ISO/IEC 10646) character set. The character identifier is either the decimal or hexadecimal
value of the character, prefixed by a pound sign. For example, the character A can be
encoded as A or A,;.

The XML specification provides character entity references, which are more readable
character identifiers for a small subset of Unicode characters. Even though the HTML 4
specification defines hundreds of character entity references, the XML specification defines
only five, for characters that interfere with well-formed XML, as shown in Table 41.

Table 4-1: XML Character Entity References

| Character | Numeric Character Reference ‘ Character Entity Reference
| " | " or ", ‘ "

| ' | ' or ', ‘ '

| & | & or & ‘ &

| < | < or < ‘ <

| > | > or > ‘ &at;

Double quotes and apostrophes have character entity references defined for them because
under certain conditions they are not allowed within the \alue of an attribute. If the value of

an attribute is surrounded by double quotes, a double quote cannot appear within the value
of the attribute. The same holds true for apostrophes. For example, the following elements
contain illegal characters:

<e a="Scott says, "This is illegal."">
<e a='Don’t do this, either.’>

The following elements are valid:
<e a='Scott says, "This is perfectly fine."*>
<e a="This isn't a problem either.">

Yet another way to embed strings with reserved characters within an XML document is

within CDATA sections. XML defines the sequence of characters <!/[CDATA] to tell the XML
processor to ignore special characters until]]> is encountered. Here is an example:

<myString><![CDATA[| can now use all five reserved characters. (",
& S,

and >)]]></nyString>

When you serialize string variables into an XML document, be sure to encode special
characters using character references or escape the string within a CDATA section.

Binary Data

&2

Binary data must be encoded before being inserted into an XML document to ensure that it
does not introduce any characters that might invalidate the XML. The XML Schema

specification defines two built-in datatypes for binary data, base64Binary and hexBinary.

Type hexBinary encodes each binary octet into its two-character hexadecimal equivalent.
For example, the binary value of 11111111 would be encoded as FF, ff, Ff, or fF.

The .NET platform provides support for encoding and decoding binhex. You can use the
XmlTextReader.ReadBinHex method to decode binhex to binary data and the
XmlITextWriter.WriteBinHex method to encode binary data to binhex.

It is far more common to see binary data of type base64Binary. This is especially true with
Web services because the SOAP 1.1 specification recommends that all binary data
embedded in a message be encoded using the base64 algorithm defined by RFC 2045.

Elements and attributes of type base64Binary contain data that are encoded using the
Base64 encoding algorithm described in RFC 2045. As Table 42 shows, each 6-bit chunk of
an array of binary octets is encoded into an XML-compatible character.

Table 4-2: The Base64 Alphabet

|Binary ‘ Base64 ‘ Binary | Base64 | Binary |Ba3664 | Binary ‘ Base64

1000000 | A 1010000 | Q 100000 |g 110000 | w
l000001 | B l010001 | R 100001 |h 110001 | x
000010 |C 010010 | s 1100010 |i 1110010 |y
000011 | D lol0011 | T 100011 |j 110011 |z
000100 | E 010100 | U 100100 |k 1110100 |0
000101 | F 010101 |V 100101 || 110101 |1
000110 |G lo10120 |w 1100110 |m 110110 |2
1000111 | H lot0111 | X |100111 |n 110111 |3
1001000 || l011000 | Y 1101000 |0 | 111000 |4
l001001 | lo11001 |z |101001 |p 111001 |5
1001010 | K 1011010 | a 1101010 |q 111010 |6
001011 | L 011011 |b 101011 |1 111011 |7
1001100 | M 011100 | ¢ 1101100 |s 111100 |8
(001101 | N lo11101 | d 101101 |t 111101 |9
001110 |0 011110 |e 1101110 |u 111110 |+
loo1111 | P lo11111 | l101111 v 111111 |/

Base64 also defines a 65th character for padding purposes. One or more = signs can
appear at the end of the encoded string. If the binary object fits neatly into 6-bit chunks, no
padding characters are applied to the end of the Base64 string. All other conditions require
zeros added to the end of the binary object. An = character is appended to the end of the
encoded string for every two zeros added to the binary object. Because a binary object is
composed of a series of bytes (8 bits), there are three possible scenarios, including the one
just mentioned:

" A single byte remains to be encoded. In this case, four zeros are appended, the two
resulting 6-bit chunks are encoded, and two = characters are appended to the end of

the encoded string.

. Two bytes remain to be encoded. In this case, two zeros are appended, the three
resulting 6-bit chunks are encoded, and a single = character is appended to the end of
the encoded string.

= Three bytes remain to be encoded. In this case, the remaining bytes can be evenly
divided into four 6-bit chunks, so no = character is appended to the end of the encoded
string.

Much like binhex, XmITextWriter and XmlITextReader provide the WriteBase64 and
ReadBase64 methods for encoding and decoding Base64- encoded data. In addition, the
.NET platform take cares of properly encoding and decoding binary data for Web services
built on top of the ASP.NET and Remoting frameworks. You saw an example of this in
Chapter 2, where | created an ASP.NET Web service that sent and received binary files

Namespaces

Namespaces are leveraged heavily in XML schemas, so | can’t go much further without first
discussing what namespaces are and how they are defined.

Namespaces provide logical boundaries for entities defined within a schema. For example,
in the previous section | created a schema that defines the Amount element. What if
someone else defines an Amount element? If an Amount element appears in an instance
document, how do | know whether it is an instance of the one defined by my schema or
theirs? If each Amount element were defined within a separate hamespace, the Amount
element would be fully qualified to a particular namespace and therefore would be

unambiguous.

targetNamespace Attribute

The targetNamespace attribute is used to set the identifier of the namespace. The value of
this attribute is a URI that serves as an opaque pointer to reference the namespace. The
following are examples of valid identifiers for namespaces:

http://sonmedonai n. conl
http://sonedonai n. conm’ Conmrer ce

ur n: Commrer ce- SomeDormai n- Com

urn: Com SomeDomai n: Commer ce

ur n: WebSer vi ce: SoapBased: Comrer ce

The first two URIs are URLs that specify a registered domain name. The last three URIs are
location-independent Uniform Resource Names (URNSs). One of the benefits of defining a
namespace within the context of a registered domain name is that you avoid potential
naming collisions with namespaces defined by others.

A namespace identified by a URI is defined within a schema document. Entities that can be
scoped to namespaces include datatypes, elements, and attributes. Within an XML Schema
document, the schemaelement can contain a targetNamespace parameter that contains a
URI for the schema.

The following code defines a namespace of the schema for the Commerce Web service. For
now, it contains the definition for the Amount element. | will enhance it later.

<?xm version="1.0" ?>

<schema xm ns='http://ww. w3. org/ 2001/ XM_Schena’
t ar get Nanmespace=" urn: Comrer ce' >

<l -- Response Message (work-in-progress) -->

<el enent nane=‘ Amount’ />

</ schema>

| added the targetNamespace attribute to the schema element and then set its value to the

Commerce URN. All entities defined by the schema are scoped within the Commerce
namespace. In this case, the only entity defined is the Amount element.

xmins Attribute

To fully qualify the entities referenced within an XML document, you need to reference one
or more schemas. XML documents that reference schemas are instance documents and
schemas themselves. Instance documents must refer to the namespace URI in order to fully

qualify the entities referenced. You can accomplish this by adding an xmins attribute to any
element within the document. Here is an example:

<?xm version="1.0" ?>
<Amount xnl ns='urn: Commer ce’ >123. 45<Anount/ >

In the instance document, | set the default namespace to Commerce. As a result, Amount
and its subelements, if it had any, are fully qualified within the Commerce namespace.

When you reference a hamespace, you can assign the reference a moniker. The assignment
of a moniker to a referenced namespace takes the form of xmins:moniker="SomeURI'". You
can then use the moniker to fully qualify entities appearing within the XML document that are
defined within the referenced namespace.

To fully qualify an entity such as a type definition or an element declaration, you prefix the
entity with the moniker followed by a colon. You saw this type of use of namespace monikers
in the previous chapter. All of the example SOAP messages defined the soap: hamespace
moniker within the reference to the SOAP schema, as shown here:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ ">

<soap: Body>
<l -- SOAP nessage -->
</ soap: Body>
</ soap: Envel ope>
It is often necessary to reference multiple schemas. You can do this by adding multiple

xmins attributes. These are often added to the root element of the document for better
readability and developer convenience. However, schema references can be made in any

element within the instance document. Here is a SOAP message that contains two Amount
elements in the message body:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ " >

<soap: Body>
<Armount xm ns=*urn: Conmer ce’ >123. 45</ Anount >
<soap: Amount xm ns: soap="'urn: Comer ce’ >123. 45</ soap: Anount >
</ soap: Body>
</ soap: Envel ope>

Even though | used different syntax, both Amount elements in the preceding document are
equivalent. Let's look at how | used the individual namespace references.

Three namespace references were made. The first reference was made in the root element
and defines the soap: moniker that is used to fully qualify entities referenced in the SOAP
Envelope schema. The second reference sets Commerce as the default namespace for the
first Amount element and its child elements (if any existed). The final reference overrides the
soap: moniker defined earlier to instead reference the Commerce schema for the second
Amount element and its children (if any existed).

Namespace references apply to the element that contains the xmins attribute and all of its
child elements. Therefore, if a namespace declaration is made within the SOAP Header

element, the declaration applies to all elements within the header. Because references are
scoped to the element in which they are declared, the reference made in the SOAP Header
element does not apply to the SOAP Body element or any of its child elements.

Namespace references are also used heavily in schema documents. Within schema
documents, it is often necessary to reference entities defined within the document. You can
do this by creating a reference within the schema document to itself. By convention, this
reference is usually associated with the tns: moniker, which is short for “this namespace.”

Here is a portion of the SOAP Envelope schema that shows the use of the tns: moniker:
<?xm version="1.0" ?>
<l-- XM. Schema for SOAP v 1.1 Envel ope -->

<l -- Copyright 2000 Devel opMentor, International Business Machines
Cor por ati on,

Lot us Devel opnent Corporation, Mcrosoft, UserlLand Software -->

<schema xm ns='http://ww. w3. org/ 1999/ XM_Schena’

xm ns:tns="http://schemas. xnm soap. or g/ soap/ envel ope/’

t ar get Namespace=' http://schemas. xm soap. or g/ soap/ envel ope/’ >

<l-- Definition for the Envel ope el enent -->

<el ement nanme="Envel ope" type="tns: Envel ope"/>

<l-- Definition for the Envel ope type -->

<conmpl exType nane=‘ Envel ope’ >
<el ement ref="tns: Header’ m nCccurs="'0"/>
<el ement ref="tns:Body’ m nCccurs="'1"/>
<any minQccurs="0" maxQOccurs="'*'/>
<anyAttri bute/>

</ compl exType>

<l-- The rest of the SOAP Envel ope schema... -->

</ schema>

The schemaelement sets the target namespace to

X . It also contains a reference to itself that is given
the moniker tns:. The schema defines the Envelope element. The Envelope element is

declared as type Envelope. Because the type definition is contained within the schema, it is
prefixed by tns:.

schemalocation Attribute

The URI of a namespace reference is an opaque pointer. So even if the URI is specified in

the form of a URL, you cannot count on it to resolve to the actual schema document.
However, you can use the schemalocation attribute to give the parser hints on where the
schema documents that define the referenced namespaces are located.

The value of the schemalLocation attribute is a whitespace-delimited string. It contains the
URI of the schema followed by the URL that resolves to the schema document that is used

to define the namespace. Multiple hints can be given within a single schemalLocation
attribute. Here is an example:

<?xm version='1.0" ?>

<Anpunt xm ns=‘urn: Conmer ce’

xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schema- i nst ance’

xsi : schemaLocati on=' urn: Commer ce http://sonmedomai n/ Contmrer ce. xsd
http://ww. w3. or g/ 2001/ XM_Schenma-i nst ance

http://ww. w3. org/ 2001/ XM_.Schema. xsd’ >

123. 45

</ Anpunt >

For illustrative purposes, the instance document references two namespaces, the
Commerce namespace and the XML Schema Instance namespace. Because the URI for the
Commerce schema is in the form of a URN, it is not resolvable. However, even though the
URI for the XML Schema Instance schema is in the form of a URL, it is not directly
resolvable either. Therefore, | use the schemalocation attribute to provide a hint about
where the schema documents for the associated namespace URIs can be located.

I will cover a couple more points regarding the schemalocation attribute before moving on to
the next topic. The schemalocation attribute can be applied to any element within the

instance document. However, unlike most other XML Schema attributes, the
schemalocation attribute stays in effect for the remainder of the document, not just for its
child elements. Finally, because the schemalocation attribute serves as a hint, the parser
might choose to locate the schema document for a particular namespace using some other
method.

noNamespaceSchemalocation Attribute

Schemas are not required to define namespaces. You can use the noNamespace-
Schemalocation attribute to reference schemas with no namespace. Here is an example:

<?xm version='1.0" ?>

<I-- File naned Commerce. xsd -->

<schema>
<l -- Response Message (work-in-progress) -->
<el ement name=‘' Anpunt’ type=/>

</ schema>

| defined a schema without a namespace definition that is contained within the file
Commerce.xsd. Next | will create an instance document that references the schema:

<?xm version='1.0" ?>
<Ampunt xm ns: xsi =" http://ww. w3. org/ 2001/ XM_Schema- i nst ance’
xsi : noNanmespaceSchemaLocati on=*fil e: Comrerce. xsd’ >

123. 45

</ Anpunt >

Because the Amount element is not defined within a namespace, | used the
noNamespaceSchemal.ocation attribute to reference the schema. The Amount element is
then fully qualified with respect to the Commerce.xsd schema.

Even though entities not defined within a namespace can be referenced, this syntax is
awkward and fragile. Therefore, you should avoid defining schemas without namespaces. If
you do have to reference a schema that does not contain a namespace definition, consider
importing the schema into a namespace definition. | discuss importing schemas later in this
chapter.

XML Schema and XML Schema Instance Namespaces

The XML specification defines two fundamental namespaces, the XML Schemanamespace
and the XML Schema Instance namespace. Even though they share a common subset of
entities such as type, element, and attribute definitions, each namespace serves a specific
purpose. The XML Schema namespace should be referenced within schema documents,
and the XML Schema Instance namespace should be referenced within instance
documents.

The XML Schemanamespace contains the entities used to define schemas. For example,
the element and schema elements used in the Commerce schema are defined in the XML
Schema namespace. The URI for the XML Schema namespace is

A

http://imww.w3.0rg/2001/XML Schema, and by convention the namespace is often referenced

by the xsd: moniker.

The XML Schema Instance namespace should be referenced by instance documents that
use entities defined within the namespace. For example, the schemalocation attribute used
in instance documents is defined within the XML Schema Instance namespace. The URI for
the XML Schema Instance namespace is http://www.w3.0rg/2001/XMLSchema-dnstance,
and by convention the namespace is often referenced by the xsi: moniker.

Element Definitions

As you have seen, elements are defined using the element element. The name attribute is

used to specify the name of the element that will appear in the instance document. You can
also use the type attribute to indicate what type of data the element can contain. | will
enhance the definition of the Amount element to indicate that it can contain only data of the
built-in type double:

<?xm version='1.0" ?>
<schema xm ns='http://ww. w3. org/ 2001/ XM_Scheng’
t ar get Nanespace=‘ urn: Conmer ce’ >
<el ement nane=' Amount’ type='double’/>
</ schema>

Element definitions can also specify whether an element can contain a nil value. You can

optionally set the element’s nillable attribute to true or false. If the nillable attribute is not
specified, the default value is false. For example, when a client calls the Purchaseltem

method on my Commerce Web service, | might or might not have access to the pricing
information to return the cost of the purchase. If the pricing information is unavailable, | do
not want to give away products for free. Therefore, | should return a null value to indicate
that pricing was unavailable instead of zero. The following is a modified version of the
previous schema that allows the Amount element to contain a null value:

<?xm version="1.0" ?>
<schema xm ns='http://ww. w3. org/ 2001/ XM_Schena’
t ar get Namespace=" urn: Comrer ce’ >
<l -- Response Message (work-in-progress) -->
<el ement nanme=‘ Anmount’ type=‘'double’ nillable="true’ />

</ schema>

To specify that the element within an instance document contains a nil value, you use the
xsi:nil attribute:

<?xm version="1.0" ?>
<Amount xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schena- i nst ance’

xm ns=' urn: Conmerce’ xsi:nil="true’ />

Because the Amount element is set to nil, the instance document is valid even though the

Amount element does not contain a value of type double. It is also worth noting that the
xsi:nil attribute applies only to the value of the element and does not apply to its attributes, if
any are defined.

Custom Datatypes

The XML Schema type system is highly extensible. It provides a mechanism for defining new
datatypes that inherit from either built-in datatypes or custom datatypes. Datatypes fall into

two categories, simple types and complex types. Simple types cannot contain subelements
or attributes; custom types can.

Simple Types

Simple types are datatypes that can be used to describe the type of data contained within an
element or an attribute. Instances of simple types cannot contain attributes or other
elements. Examples of simple types include int, long, string, and dateTime. A simple type
can also define an enumeration or a union.

A simple type definition always derives from another simple type. The three types of
derivations allowed by XML Schema are by restriction, by list, and by union.

A simple type derived from its base type by restriction can define additional restrictions
imposed on the values that instances of the simple type can contain. Therefore, instances of
a simple type derived by restriction can contain only a subset of the values that can be
contained by its base type.

For example, the built-in double type is a restricted version of the decimal type. Instances of
the decimal type are unbounded, and instances of the double type are restricted to values
that meet the IEEE single-precision 64-bit floating type. Following are a couple of simple
type definitions that derive by restriction.

<?xm version='1.0" ?>
<schema xm ns="http://ww.w3. org/ 2001/ XM_.Schema. xsd" >

<si nmpl eType nane="M/lnt">
<restriction base="int"/>

</ si mpl eType>

<si npl eType name="Generi cProduct|d">
<restriction base="string">
<m nLength val ue="1"/>
<maxLengt h val ue="20"/>
</restriction>
</ si mpl eType>

<si npl eType nane="Percent">
<restriction base="integer">
<m nl ncl usi ve val ue="0"/>
<mex!| ncl usi ve val ue="100"/>
</restriction>
</ si mpl eType>

</ schema>

The first simple type definition, MyInt, defines a datatype to which no additional restrictions
were applied. A value of type Mylint can contain any value defined by its base type, int.

The second simple type definition, GenericProductld, defines a restricted version of the
string datatype. Values of the type can contain a string from 1 to 20 characters. The Percent
definition is similar; it restricts values of the type to integers between 0 and 100.

The XML Schema describes a whole host of constraints (shown in Table 4-3) that can be
applied to simple type definitions.

Table 4-3: XML Schema Datatype Constraints

| Constraints

‘ Definition

| length

‘ Instances of the type must contain a fixed-length number of units.

| minLength

‘ Instances of the type must contain a minimum number of units.

| maxLength

pattern

‘ Instances of the type can contain only a maximum number of units.

Instances of the type can contain only data that matches a specific

pattern defined by a regular expression. For example, a regular
expression that can be used to define a Social Security Number

would be [0-9K{3}-[0-9}{2}-{0-O{4}.

enumeration

Instances of the type can contain only a specified set of values.

whiteSpace

Instances of the type derived from string are processed by the XML
parser one of three ways depending on the attribute’s value. The
default value preserve states that the value is left unchanged. The
value replace states that all occurrences of tabs, line feeds, and
carriage returns will be replaced with spaces. The value collapse
states that any sequence of spaces will be collapsed to a single
space.

mininclusive

Instances of the type cannot contain a value less than the value
specified. The value of mininclusive must be at least as restrictive

as its base type.

minExclusive

Instances of the type cannot contain a value less than or equal to
the value specified. The value of minExclusive must be at least as
restrictive as its base type.

maxInclusive

Instances of the type cannot contain a value less than the value
specified. The value of maxinclusive must be at least as restrictive
as its base type.

maxExclusive

Instances of the type cannot contain a value less than or equal to
the value specified. The value of maxExclusive must be at least as
restrictive as its base type.

totalDigits

Specifies the maximum number of digits an instance of the type
can contain. The type must derive from decimal.

fractionDigits

Specifies the maximum number of digits to the right of the decimal
point an instance of the type can contain. The type must derive
from decimal.

One of the more interesting constraints is pattern. The pattern constraint allows you to define
a regular expression that will be used to limit to potential values of a particular type. By

leveraging pattern constraints within your simple type definition, you can significantly reduce
the amount of validation code you need to write for your Web service.

Let’s take a look at an example of where a pattern restriction can be helpful. Recall that the
Orderltem method exposed by the Commerce Web service accepts a parameter called Item.
In the previous example, | defined a type called Productld for defining the type of data that
can be contained within the ltem element.

In addition to length restrictions, suppose that an instance of a Productld cannot contain the

following characters: /\[]:;| =, + * <>. If | were to use the Productld type as defined
previously, | would have to write code to ensure that no illegal characters were included

within the Iltem element. Instead, | will add a pattern constraint to the Productld definition that
restricts the type of characters that values of that type can contain.

<?xm version="1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma. xsd"
xm ns:tns="urn: Comrerce" target Namespace="urn: Cormer ce" >

<si npl eType nanme="Product|d">
<restriction base="string">
<m nLength val ue="1"/>
<maxLengt h val ue="20"/>
<pattern val ue='[*/\ [] : ;| =, +*?> &l t;]+ />
</restriction>
</ si mpl eType>

<l -- Request Message (work-in-progress) -->
<el ement name=‘'ltem type='tns:Productld />

<l -- Response Message (work-in-progress) -->

<el enment nane=‘' Ampunt’ type='double’ nillable="true />

</ schema>

Another useful constraint is the enumeration. The value of an enumeration can contain one

of a fixed set of possible values. For example, suppose | want to restrict the value of the ltem
attribute to one of a set of possible values. The following example creates a datatype called
Items that can contain the possible values of the Item element:

<?xm version='1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schena. xsd"
xm ns:tns="urn: Comer ce" target Namespace="urn: Cormer ce" >

<l-- Rerpoved the Productld type definition for clarity -->

<si npl eType name="I|tens">
<restriction base="Productld">

<enuneration val ue="Appl e"/>

<enumer ati on val ue="Banana"/ >

<enuner ation val ue="Orange"/ >
</restriction>

</ si npl eType>

<l -- Request Message (work-in-progress) -->
<el ement nane=‘'ltenl type=‘tns:ltens’/>

<l -- Response Message (work-in-progress) -->
<el ement nanme=‘ Anount’ type='double’ nillable="true' />

</ schema>

The Items type definition creates an enumeration of type Productld with three possible
values. The Item element is defined as type Items, so it can contain only the value Apple,
Banana, or Orange.

Simple types can also derive by list. Deriving by list indicates that the value of the type can
contain one or more values of the base type, where each value is delimited by whitespace.
An example is the SOAP encodingStyle attribute. Recall that this attribute can accept a
whitespace-delimited list of URIs. The following example defines the SOAP encodingStyle
attribute:

<si npl eType nane=‘' encodi ngStyl e’ >
<list base='uri-reference’ />
</ si npl eType>

List types are not a substitute for SOAP encoded arrays. SOAP arrays provide a standard

method of encoding for instances of simple types as well as complex types. SOAP Encoding
also defines syntax for the partial serialization of arrays.

Simple types can also be derived by union. An instance of a type derived by union can
contain a value of one of the types contained within the union. The following example
defines two unions, MyUnion and PhoneNumber:

<?xm version="1.0" ?>
<schema xm ns="http://ww.w3. org/ 2001/ XM_.Schenma. xsd" >

<si nmpl eType nane="MyUni on" >
<uni on menber Types="string int"/>
</ si mpl eType>

<si npl eType nane="PhoneNunber" >
<uni on>
<si npl eType nane="UsPhoneNunber"/>
<restriction base="string"/>

<pattern value="([0-9]{3}) [0-9]{3}-[0-9]{4}"/>
</restriction>

</ si npl eType>

<si npl eType name="UkPhoneNunber" >
<restriction base="string">

<pattern val ue="+[0-9]{2} ([0-9])[0-9]{3} [0-9]{3} [O-
91{4}"/ >

</restriction>
</ si mpl eType>
</ uni on>

</ si mpl eType>

</ schema>

The preceding schema shows two ways of defining union simple types. The first type
definition uses the memberTypes attribute to list the types contained within the union. The
MyElement element can contain string or int values. The second type definition defines a

union composed of embedded simple type definitions. The two embedded types define a
U.S. phone number and a U.K. phone number. The PhoneNumber union can contain values
such as (303) 555-1212 or +44 (0)121 643 2345.

Type definitions can be either named or anonymous. If a type definition is embedded within
another definition (an element definition, for example), you do not have to provide the type
with a name. Here is a modified version of the Commerce Web service schema that defines
the enumeration as an anonymous type:

<?xm version="1.0"?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma. xsd"
xm ns:tns="urn: Comrerce" target Namespace="urn: Cormer ce" >

<l-- Portions of the schema have been renmpved for clarity. -->

<l -- Request Message (work-in-progress) -->
<el ement nane=‘'lten >
<si mpl eType>
<restriction base="Productld">
<enumer ati on val ue="Appl e"/>
<enumer ati on val ue="Banana"/>
<enumer ation val ue="0Orange"/ >
</restriction>
</ si mpl eType>
</ el enent >

</ schema>

The enumeration containing possible values for the Item element is defined as an
anonymous type. Because the enumeration is defined within the scope of the element

definition, the type attribute does not need to be specified because it is implied. Because the
enumeration type can be referenced only by the element itself, it is not necessary to specify
a name for the type.

You should define anonymous types with caution. Types that are used only once are good
candidates for anonymous type definitions. However, if the datatype might be reused in
other contexts, you should avoid declaring anonymous type definitions.

You should also be cautious about using simple types, including built-in types, within RPC
style Web services. Parameters that are passed by value can be defined using simple types.
But parameters passed by reference should not. Recall that SOAP Encoding specifies a
means of encoding parameters passed by reference using the id and href attributes.
Because elements defined using simple types cannot contain attributes, they cannot be
properly encoded within the SOAP message. For this reason, the SOAP Encoding schema
defines wrapper types for the builtin types defined by XML Schema.

Complex Types

A complex type is a logical grouping of element and/or attribute declarations. One can argue
that XML instance documents aren’t very interesting or useful without complex types. For
example, the SOAP Envelope schema defines numerous complex types. The Envelope itself

is a complex type because it must contain other elements such as the Body element and
possibly a Header element. | will use complex types to define the body of the response and
request SOAP messages for the Commerce Web service.

A complex type is defined using the complexType element. The complexType element
contains declarations for all elements and attributes that can be contained within the
element. For example, the body of the Purchaseltem request and response messages can
be described by creating a complex type. Here is the schema definition for the Commerce

Web service:
<?xm version='1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schena. xsd"

xm ns:tns="urn: Comrerce" target Namespace="urn: Cormer ce" >

<l-- Type Definitions -->
<si npl eType nanme="Product!|d">
<restriction base="string">
<m nLength val ue="1"/>
<maxLengt h val ue="20"/>
<pattern val ue='[*/\ [] : ;| =, +*?> ; &l t;]+ />
</restriction>
</ si mpl eType>

<si mpl eType nanme="Itens">
<restriction base="Productld">
<enuner ati on val ue="Appl e"/>

<enuner ation val ue="Banana"/ >
<enuner ation val ue="Orange"/ >
</restriction>
</ si mpl eType>

<! -- Request Message (work-in-progress) -->
<el ement nane=‘ Purchaseltem >
<conpl exType>
<el ement name=‘'Iltem type='tns:Productld />
<el ement name=' Quantity’ type='int’/>
</ conpl exType>
</ el enent >

<l -- Response Message (work-in-progress) -->
<el enent nane=' Purchasel t emResponse’ >
<conpl exType>
<el ement name=‘ Anount’ type='double’ nillable="true />
</ conpl exType>

</ el ement >

</ schema>

The schema defines two complex types that define the body of the SOAP request and
response message. In accordance with the SOAP specification, | defined a Purchaseltem
element to contain all of the parameters passed to the Purchaseltem method of the
Commerce Web service. The body of the response message will contain an element named
PurchaseltemResponse and will contain one subelement for the return type.

Complex types can be divided into two categories: types that contain other elements and
types that do not. Within a complex type definition, you can specify either a complexContent
or a simpleContent element. The previous datatype definitions did not contain either of these
elements. If neither element is used in the complex type definition, complexContent is
assumed. Therefore, the following more verbose definition of the Purchaseltem element is
equivalent to the previous definition:

<?xm version="1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schena. xsd"
xm ns:tns="urn: Comrer ce" target Namespace="urn: Cormer ce" >

<l-- Portions of the schema have been renmpved for clarity. -->

<l -- Request Message (work-in-progress) -->
<el ement nane=' Purchaseltem >
<conpl exType>
<conpl exCont ent >

<ext ensi on>
<el ement name='ltem type=‘'tns:Productld’ />
<el ement nanme=‘'Quantity’ type='int’'/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el enent >

</ schema>

Notice that the schema also includes the extension element. If either simpleContent or
complexContent is specified, its immediate child element must be either the restriction or
extension element. By default, a complex type will define an extended version of its base
type. If the base type is not specified, the type definition will extend anyType. In other words,
a complex type definition that does not explicitly state whether it contains complex or simple
content will default to containing complex content and deriving from anyType by extension.

As with simple type definitions, you can create complex types that are more restrictive than
the base type. Unlike simple types, which restrict the string value of an instance of a type,
complex types have restrictions related to the element and attribute definitions contained
within the type. The following example defines the Family complex type and then defines
some types that derive by restriction:

<?xm version="1.0" ?>
<schema xm ns=‘http://ww. w3. org/ 2001/ XM_Schema’ >

<!-- Base type -->
<conpl exType name='Fam |y’ >
<el ement name=‘Parent’ m nOccurs='1 maxCccurs='2"/>
<el enment nanme=‘'Child type=‘string’ mnQccurs='0/>
<conpl exType name=*' Children’ >

<l-- The nunber of parents is restricted to one. -->
<conpl exType name='Si ngl eParent Fam |y’ >
<conpl exCont ent >
<restriction base='Fan |y’ >

<el ement name=‘ Parent’ type='string’ mnCccurs=1
maxCccurs="1"/>

<el ement nanme='Child type='string’ m nOccurs='0"/>
</restriction>
</ conmpl exCont ent >
</ conpl exType>

<l-- No Child elenents are allowed. -->

<conpl exType nane=' Chil dl essFam |y’ >

<conpl exCont ent >
<restriction base=' Fam |y’ >

<el ement nanme=‘Parent’ type='string’ mnCccurs="1
maxCccurs="1"/>

<el ement name='Child type='string mnCccurs=0
maxCOccurs='0"/>

</restriction>
</ compl exCont ent >
</ conmpl exType>

<l'-- The nanme of the children can only be George. -->
<conpl exType nanme=‘ For emanFam |y’ >
<conpl exCont ent >
<restriction base='Fanm |y’ >

<el ement nanme=‘Parent’ type='string’ mnCccurs='0’
maxCccurs="'2"/>

<el ement name='Child type='string mnCccurs="'0
fi xed=' George’ />

</restriction>
</ conpl exCont ent >
</ conmpl exType>

<!-- Not a legal type declaration -->
<conpl exType nanme=' Or phanedFani |y’ >
<conpl exCont ent >
<restriction base='Fam |y’ >
<el ement name=‘Parent’ type='string’ mnCccurs='0’
maxCOccurs='0"/>
<el ement nanme='Child type=‘string’ m nOccurs='0"/>
</restriction>
</ conpl exCont ent >
</ compl exType>

</ schema>

| defined three valid restricted derivatives of the Family type. The SingleParentFamily
datatype restricts the number of Parent elements that can appear within an instance. The
ChildlessFamily datatype disallows the optional Child element from appearing within an
instance. Then, in true George Foreman fashion, the ForemanFamily datatype allows Child
elements as long as the name of each is George.

One caveat with restricted types—and with extended types, for that matter—is that the
derived types must be able to be substituted for their base type without any issue. The two
derived types in the example, SingleParentFamily and ForemanFamily, meet this
requirement. The OrphanedFamily type definition does not meet this requirement. Because

the base type Family states that you must have at least one Parent element, an instance of
OrphanedFamily cannot serve as a substitute.

Recall that SOAP Encoding provides a means of maintaining the identity of parameters
passed by reference. This is accomplished with the id and href attributes. These attributes
allow an element to reference data that is encoded at another location within or even outside
of the SOAP message. (See Chapter 3 for more information.) The following example
illustrates the need for such a mechanism:

/'l Server Code:
public void Test Reference(ref int x, ref int y)
{

X += 3;

y += 10;

/1 Client Code:

int z = 2;

Test Ref erence(ref z, ref 2z);

/1 z should now equal 20 (2 + 3 + 10).

For the TestReference method to run correctly, the identity of z must be maintained.

Therefore, the elements for parameters x and y cannot be of type int defined by XML
Schema because the elements will not be able to contain the href and id attributes to be

defined. So, the SOAP Encoding schema extends the built-in types. The following example
performs the same redefinition:

<?xm version='1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schena. xsd"
t ar get Namespace=" ur n: Ext endedBui | ti nTypes’ >

<conpl exType name='int’ >
<si npl eCont ent >
<extension base='int’>
<attribute name='id type='ID/>
<attribute name=*href’ type='uri Reference’/>
</ ext ensi on>
<si npl eCont ent >
</ compl exType>

</ schema>

SOAP Encoding specifies that the order in which parameters of an RPC- style message
appear is significant. Therefore, | use the sequence element in the schema to indicate that
the Item element must appear first, followed by the Quantity element. You can also specify
any combination of the minOccurs and maxOccurs attributes. In this case, neither attribute
was specified, so the default value of 1 will be assumed. The following is the complete
schema for the Commerce Web service:

<?xm version='1.0" ?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma. xsd"

xm ns:tns="urn: Conmrer ce" targetNamespace="urn: Comrerce" >

<l-- Type Definitions -->
<si npl eType nanme="Product|d">
<restriction base="string">
<m nLength val ue="1"/>
<maxLengt h val ue="20"/>
<pattern val ue='["/\ [] : ;| =, +*?> &l t;]+ />
</restriction>
</ si mpl eType>

<si npl eType name="Iltens">
<restriction base="Productld">
<enuneration val ue="Appl e"/>
<enuner ati on val ue="Banana"/ >
<enuner ati on val ue="Orange"/ >
</restriction>
</ si npl eType>

<l-- Request Message (work-in-progress) -->
<el ement name=‘ Pur chaseltemn >
<conpl exType>
<sequence>
<el ement nanme=‘ltenl type=‘tns:Productld />
<el ement name=' Quantity’ type='int’'/>
</ sequence>
</ conpl exType>
</ el enent >

<l -- Response Message (work-in-progress) -->
<el enent nane=' Purchasel t emResponse’ >
<conpl exType>
<el ement name=‘ Anount’ type='double’ nillable="true />
</ conpl exType>

</ el ement >

</ schema>

Other elements that can be used to achieve specific behavior related to the elements
defined within a type include the choice and all elements. The choice element allows only

one of the elements defined within the complex type to appear within an instance of the type.
The all element allows any subset of the elements defined within the type to appear in any
order.

There is one more difference between the all element and the sequence and choice
elements. Complex type declarations made within the latter elements can contain
maxOccurs and minOccurs attributes. However, elements defined within the all element can
specify only a maxOccurs and a minOccurs attribute with a value of 0 or 1.

By default, datatypes defined using the complexContent element do not allow mixed content.
Mixed content means values that contain text as well as child elements. You can override
this behavior by adding a mixed attribute and setting its value to true. In most cases,
including this one, disallowing mixed content is preferred.

Sometimes it is necessary to specify that any element or attribute can appear within an

instance of a complex type. For example, the anyType type indicates that any element or
attribute can appear within an element of type anyType. You can do this by using the any

and anyAttribute elements within the complex type definition. Here is the definition of the
anyType type:

<?xm version='1.0" ?>

<schema xm ns='http://ww. w3. org/ 2001/ XM_Scheng’

xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/’

t ar get Namespace="' http://schemas. xm soap. or g/ soap/ envel ope/’ >

<xs:conpl exType nanme="anyType" ni xed="true">

<xs:annot ati on>
<xs: docunent ati on>
Not the real urType, but as close an approxi mati on as we can
get in the XML representation</xs: docunmentation>

</ xs:annot ati on>

<Xs:seguence>
<xs:any m nOccurs="0" maxQOccurs="unbounded"/ >

</ Xxs: sequence>

<xs:anyAttribute/>

</ xs: conpl exType>

</ schema>

The preceding portion of the schema for XML Schema itself defines the anyType complex
type. The any element states that any element can appear within an element of type
anyType. The minOccurs and maxOccurs attributes are also used to indicate that zero or
more elements can appear.

You can also impose additional constraints on the attributes and elements that can appear
within an instance document by using the nhamespace attribute. This attribute allows you to
declare what namespace-scoped attributes and elements can and cannot be contained
within an instance document. Table 4-4 lists the possible values of the namespace attribute.

Table 4-4: Values of the namespace Attribute

namespace Attribute Description

##any (default) The parent element can contain any well-formed XML
element/attribute from any namespace.

##local The parent element can contain any well-formed XML
element/attribute that does not belong to a namespace.

#ttargetNamespace The parent element can contain any well-formed
element/attribute that is defined within the schema’s
target namespace where the type is being defined.

##other The parent element can contain any well-formed
element/attribute not defined within the schema’s target

namespace where the type is being defined.

Space-delimited list of URIs The parent element can contain any well-formed
element/attribute from the specified namespaces.

The other attribute that can be specified in either the any or anyAttribute element is
processContents. The processContents attribute indicates how the instance document
should be processed by the system. Table 45 lists the possible values of the
processContents attribute.

Table 4-5: Values of the processContents Attribute

processContents Description

Attribute

strict (default) The system must validate all elements/attributes against their
respective namespaces.

skip The system must attempt to validate all elements/attributes against
their respective namespaces. If the attempt fails, no errors will be
generated.

lax The system will not attempt to validate elements/attributes against

their respective namespaces.

Element and Attribute Groups

You might often find yourself adding the same set of attributes or elements to multiple
complex type definitions. The XML Schema provides the group and attributeGroup elements
for logically grouping elements and attributes together. Attribute and element groups provide

a convenient way to define a set of attributes or elements once and then reference them
multiple times in complex type definitions.

One example in which an attribute group is used is within the SOAP Encoding schema. The
schema contains complex type definitions that extend the XML Schema built-in types so they
can be passed by reference within the body of a SOAP message. Here is an attribute group

definition defined by the SOAP Encoding schema:
<attributeG oup name=' conmonAttri butes’ >
<attribute name='id type='ID/>
<attribute nane='href’ type='uriReference’ />

<anyAttri bute nanespace=' ##ot her’ />
</attributeG oup>

The preceding fragment defines the commonAttributes attribute group. It contains the
attribute definition for the id and href attributes, which are necessary for encoding
parameters passed by reference. Here is a type definition that derives from the built-in string
data type that references the attribute group:

<el ement nanme='string type=‘tns:string />
<conpl exType nane='string’ >
<conpl exCont ent >
<ext ensi on base='string’ >
<attributeGoup ref="tns:conmonAttributes’ />
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

The above type definition is actually an updated version of the one that appears in the SOAP
Encoding schema. The original schema was written against a previous version of the XML
Schema specification. The complex type definition references the attribute group using the
ref attribute, which contains the value of the targeted attribute group definition. Elements can
be grouped together using the group element and can be referenced using the ref attribute
as well.

Namespace Scoping

Element and attribute declarations that are locally scoped within a complex type definition
can be either qualified or unqualified. The default value is unqualified, which means that the
element or attribute is not affiliated with any namespace. Here is an example:

<?xm version="1.0" ?>
<schema xm ns='http:// ww. w3. org/ 2001/ XM_Schena’

xm ns:tns="urn: Exanpl e: Scopi ng’
t ar get Nanespace=' ur n: Exanpl e: Scopi ng’ >

<el enment nane=' d obal | yScoped’ / >

<el emrent nane=‘' WEIl emrent’ >
<conpl exType>
<el enent name=‘Local | yScoped’ />
<el ement ref='tns: d oball yScoped’ />
</ conpl exType>
</ el enent >

</ schema>

The schema defines two globally scoped elements, GloballyScoped and MyElement. The
MyElement element declaration defines an anonymous complex type that contains two

element declarations: a locally scoped element named LocallyScoped and a reference to a
globally scoped element named— what else—GloballyScoped. Next I'll create an instance
document:

<?xm version='1.0" ?>

<ex: MyEl ement xml ns: ex=' ur n: Exanpl e: Scopi ng’ >
<Local | yScoped/ >
<ex: d obal | yScoped/ >

</ ex: M\yEl enent >

The instance document contains a single MyElement element. Notice that the child elements
of the MyElement element are qualified differently. The LocallyScoped element does not

have a prefix because it is not affiliated with any namespace. The GloballyScoped element is
fully qualified within the ex: prefix. Because the GloballyScoped element was defined as a
global element, it is affiliated with the urn:Example:Scoping namespace.

Be aware that, if you set the default namespace within an instance document, locally scoped
elements and attributes do not belong to the default namespace. For example, the following

instance document is not valid because the LocallyScoped element is not a part of the
urn:Example:Scoping namespace:

<?xm version='1.0" ?>
<MyEl ement xnml ns='urn: Exanpl e: Scopi ng’ >
<l-- Invalid because LocallyScoped is not affiliated
with the default namespace -->
<Local | yScoped/ >
<d obal | yScoped/ >
</ M\yEl erment >

There are two ways to avoid this problem. The first solution is to assign a prefix to the
namespace reference instead of assigning a default namespace. In the first example, |
associated the ex: prefix with the urn:Example:Scoping namespace. The second solution is
to override the default namespace declaration in each local element or attribute, as in this

example:
<?xm version="'1.0" ?>
<MyEl ement xm ns='urn: Exanpl e: Scopi ng’ >

<l-- Valid because Local |l yScoped overrides the default namespace -
->

<Local | yScoped xml ns=""*/>
<d obal | yScoped/ >
</ MyEl erment >

You can avoid problems with locally scoped elements and attributes by affiliating them with
the namespace in which they are defined. You can do this by setting the form attribute within
the element or attribute declaration to qualified. This requires the locally scoped element or
attribute to be qualified with respect to its namespace. Here is an updated version of the
schema:

<?xm version='1.0" ?>
<schema xm ns='http://ww. w3. org/ 2001/ XM_Scheng’

xm ns:tns="urn: Exanpl e: Scopi ng2’
t ar get Namespace="‘ ur n: Exanpl e: Scopi ng2’ >

<el ement name=' d obal | yScoped’ / >

<el ement nanme=' MWyEl enent’ >
<conpl exType>
<el ement nane='Local | yScoped’ forme' qualified />
<el ement ref='tns: d oball yScoped’' />
</ conpl exType>
</ el enent >

</ schema>

This time, | indicated that the LocallyScoped element must be fully qualified within the
instance document. Here is the instance document updated to reflect the changes made to
the schema:

<?xm version='1.0" ?>

<MyEl ement xm ns='urn: Exanpl e: Scopi ng2’ >
<l-- Valid since LocallyScoped el ement must be fully qualified -->
<Local | yScoped/ >
<d obal | yScoped/ >

</ MyEl erment >

You can also override the default value for the form attribute. You can do this by setting two
attributes in the schema element: elementFormDefault and attributeFormDefault. Schemas
automatically generated by the .NET platform for Web services will generally set
elementFormDefault and attributeFormDefault to qualify.

Polymorphism

Polymorphism is when instances of different types can be treated similarly. The XML
Schema provides two mechanisms for enabling polymorphic behavior: inheritance and
substitution groups.

As | demonstrated in the previous sections, XML Schema provides a rich inheritance model.
You can create new simple types that derive by restriction, and you can create new complex
types that derive by extension as well as restriction.

One of the rules of a derived type is that it must be able to be substituted for its base type.
As a result, an instance of a derived type can be substituted in an instance document for its
base type. The system is informed that the instance document contains an instance of a
derived type via the xsi:type attribute.

For example, suppose you want to create a common type system for describing tires. You
want any tire dealer or manufacturer to be able to use this type system to create a Web
service for obtaining price quotes for the tires they sell. Here are the common datatypes
used to describe tires:

<?xm version='1.0" ?>
<schema xm ns='http://ww. w3. org/ 2001/ XM_Schena’

t ar get Namespace="urn: TireTypes’ >

<conpl exType nanme='Tire' abstract='true’ >
<el ement name=' Wheel Di aneter’ type=‘int’'/>
<el enment nane='Wdth' type=‘int’'/>

</ conmpl exType>

<conpl exType nanme=' Aut oTire’ >
<conpl exCont ent >
<extension base='Tire' >
<el ement nanme=' Wheel Di aneter’ type=‘int’/>
<el enent nane='Wdth' type=‘int’'/>
<el enent nane=‘ AspectRati o type='int’'/>
</ ext ensi on>
</ compl exCont ent >
</ conmpl exType>

<el ement name=‘ Mount ai nBi keTire’ >
<conpl exCont ent >
<extensi on base='Tire >
<el enment nane=' \WWeel Di aneter’ type=‘int’/>
<el enent nane='Wdth' type=‘int’'/>
<el enent nane=' Position' />
<si npl eType>
<restriction base='string’ >
<enuneration val ue='Front’/>
<enuner ation val ue=' Rear’ />
</restriction>
</ si nmpl eType>
</ el ement >
</ ext ensi on>
</ conmpl exCont ent >

</ el ement >

</ schema>

This schema defines the Tire base type. It contains two child elements for the rim size and
the width of the tire. It then derives two separate types from the Tire base type called

AutoTire and MountainBikeTire. In both instances, the Tire type is extended to add additional
elements needed to describe the specific type of tire.

Instances of the Tire base type include insufficient information to describe a specific tire.
Therefore, the abstract property within the type declaration is set to true. Setting the abstract
property of the Tire complex type definition to true indicates that the Tire type is not intended
to be directly creatable.

A fictitious company, The Round Rubber Tire Company, sells all types of tires and wants to
expose a Web service for getting price quotes on tires. Here is a schema for the NewTires
Web service that leverages the tire types:

<?xm version="1.0" ?>

<schema xm ns='http://ww. w3. org/ 2001/ XM_.Schena’
xm ns:vt="urn: TireTypes’

t arget Namespace=" http://roundrubbertire. com NewTires’
el enent For nDef aul t =" qual i fied >

<el enent nane=' Get Quot e’ >
<conpl exType>
<elenent name='Tire' type='vt:Tire />
<el ement name=' Quantity’ type=‘int’'/>
</ conpl exType>
</ el enent >

<el ement nanme=' Get Quot eResul ts’ >
<conpl exType>
<el ement nanme=‘'Result’ type='double’ />
</ conpl exType>
</ el enent >

</ schema>

The GetQuote method accepts information about the requested tire and the quantity. The
price of the new tires is then returned as a double. However, because the Tire datatype is
abstract, the Web service needs to receive a derivative of the Tire type. The following SOAP
message requests a quote for new tires of type AutoTire:

<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xml soap. or g/ soap/ envel ope/ "

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"

xm ns:tires="http://bigrubbertire.com NewTires"
xm ns:vt="urn: TireTypes">

<soap: Body>
<tires: Get Quot e>
<tires:Tire xsi:type="vt:AutoTire"/>

<tires:Wheel Di anet er >16</tires: Weel Di anet er >
<tires: Wdth>225</tires: Tires>
<tires: Aspect Rati 0>50</tires: Aspect Rati o>

</[tires:Tire>

</tires:Quantity>4</tires: Quantity>

</tires: Get Quot e>
</ soap: Body>
</ soap: Envel ope>

The body of the SOAP message contains the GetQuote element that contains the Tire
parameter. The Tire parameter contains an instance of the AutoTire type, as indicated by the
xsi:type attribute. The parameter is a legal substitution because AutoTire is a derivative of
Tire.

XML Schema also supports polymorphic behavior at the element level via the concept of
substitution groups. A substitution group is a group of elements that can serve as substitutes
for a given element within an instance document. You can add element definitions to a
substitution group by using the substitutionGroup attribute.

The substitutionGroup attribute contains a reference to the element for which it can serve as
a substitute. All element definitions within a substitution group must be the same type or a
derivative of the type of the target element. In the following example, the schema for the
NewTires Web service is rewritten to use group substitution instead of type substitution:

<?xm version='1.0" ?>

<schema xm ns='http://ww. w3. org/ 2001/ XM_Scheng’
xm ns:vt="urn: TireTypes’

t ar get Namespace="' http://rubbertire.com NewTires

xm ns:tns="http://rubbertire.com NewTires’
el enment For nDef aul t =" qual i fied >

<el enent nane=‘ Get Quot e’ >
<conpl exType>
<element ref="tns:Tire />
<el enment name=' Quantity’ type=‘int’'/>
</ conmpl exType>
</ el enent >

<el ement nanme=' Get Quot eResul ts’ >
<conpl exType>
<el enment name=‘' Result’ type='double’ />
</ conpl exType>
</ el enent >

<!-- Declare the Tire elenent and its substitutes. -->

<el ement name='Tire' type='vt:Tire' abstract="true' />

<el enent nane=' AutoTire’ type='vt:AutoTire’
substitutionGoup='tns:Tire'/>

<el ement name=‘ Mount ai nBi keTire type='vt: Munt ai nBi keTire’

substitutionGoup="tns:Tire' />

</ schema>

In the new schema, the definition of the Tire element was moved from within the GetQuote
complex type (locally scoped) to directly under the schema element (globally scoped).
Because | did not want the tire element to appear within the instance document, | set the
abstract property to true within the element definition. | then defined two other elements to
serve as substitutions for the Tire element. Here is the resulting SOAP message for ordering
a set of automobile tires:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ "

xm ns:tires="http://bigrubbertire.con NewTires">
<soap: Body>
<tires: Get Quote>
<tires:AutoTire/>
<tires: Wheel Di anet er >16</tires: Weel Di anet er >
<tires: Wdth>225</tires: Tires>
<tires: Aspect Rati 0>50</tires: Aspect Rati 0>
</[tires:AutoTire>
<tires:Quantity>4</tires: Quantity>
</tires: Get Quot e>
</ soap: Body>
</ soap: Envel ope>

The Tire element was replaced by the AutoTire element within the document. There was no
need to decorate the element with the xsi:type attribute because the element is strongly
typed by the schema itself.

Restricting Inheritance

Because any derived type can be substituted for its base type, you might sometimes want to
state how a base class can be inherited. For example, the urn:TireTypes namespace defined
earlier defines the Tire datatype. The Tire datatype is defined as abstract because an
instance of that type would not contain enough information to adequately describe a tire.
However, setting the type to abstract does not provide a full solution.

A client can easily circumvent using a more rich type by deriving a new type from Tire by
restriction. The client can then invoke the GetQuote method and pass it an instance of the
new type. Here is an example:

<?xm version="1.0" ?>

<schema xm ns='http://ww. w3. org/ 2001/ XM_.Schenma’
xmns:tire="urn: TireTypes’

tar get Nanespace=* urn: Deri vedTireTypes’ >

<conpl exType nane=' SkinnyTire’ abstract="true’/>
<conpl exContent base='tire:Tire' >
<restriction >
<el enent nanme=' Wheel Di aneter’ type=‘int’'/>
<el ement name="Wdth' type="int’ fixed="1/>
</restriction>
</ conmpl exCont ent >
</ conpl exType>

</ schema>

| first derived a more restricted version of the Tire type. I'll then pass an instance of this new
type to the GetQuote method:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns:tires="http://bigrubbertire.conm NewTires"
xm ns: vt ="urn: DerivedTi reTypes"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<soap: Body>
<tires: Get Quot e>
<tires:Tire xsi:type="dt: SkinnyTire"/>
<tires:VWheel Di amet er >16</tires: \Weel Di anet er >
<tires:Wdth>1</tires: Tires>
</[tires:Tire>
<tires:Quantity>2</tires: Quantity>
</tires: Get Quot e>
</ soap: Body>

</ soap: Envel ope>

As | stated earlier, the Web service cannot quote the price of a tire based on only the wheel
diameter and width. Therefore, if the Web service receives an instance of SkinnyTire, a
restricted derivation of the Tire datatype, it will be unable to provide a price quote. One
solution is to disallow inheritance by restriction.

An example of where you might want to disallow inheritance by extension is if you use a type

that represents the long version of the U.S. Federal income tax form. It might not be
necessary for all filers to complete the entire long form, so the government issues the EZ

form. The EZ form is a derivative of the long form with restrictions on the amount of data it
can contain.

You can dictate how a datatype can be inherited by setting the final attribute in the
complexType element. Table 4-6 describes the possible values.

Table 4-6: Values of the final Attribute

final Description
Attribute
#all The type cannot serve as a base type for types that are derived by
extension and restriction.
| restriction | The type can be a base type only for types that derive by extension.
| extension | The type can be a base type only for types that derive by restriction.

If the final attribute is not set, the default value is #all. You can override the default value by
setting the finalDefault attribute within the schema element.

Sometimes it makes sense to allow others to inherit from datatypes but limit instances of
derived types from appearing in instance documents. For example, tax preparation services
often collect information beyond what is called for on the long income tax form. The tax
preparation service might therefore want to derive from the long form datatype by extension
for use within its own internal system.

When it comes time to electronically file the tax form, the schema for the Web service needs

a means of disallowing instances of the extended versions of the long form datatype. This is
accomplished by setting the block attribute on the tax form element declaration to extension.
The other possible values of the block attribute are listed in Table 4-7.

Table 4-7: Values of the block Attribute

block Description

Attribute

restriction The element cannot contain an instance of a type derived by
restriction.

extension The element cannot contain an instance of a type derived by
extension.

substitution The element cannot be substituted for another element within its
substitution group.

#all The element cannot contain an instance of a derived type and cannot
be substituted for another element within its substitution group.

If the block attribute is not specified, the default behavior is to allow the element to contain
an instance of a derived type or be substituted with another element within its substitution
group. You can override the default value by setting the finalDefault attribute within the
schema element to the desired value.

Summary

XML Schema provides a comprehensive and flexible means of describing the structure as
well as the type of data that should appear within an instance document. It is superior to the
DTD schema language first introduced with XML 1.0.

XML Schema provides a standard type system. The type system is used to define a
platform-independent way of describing the type of data that can be contained within an
element or attribute. The type system also provides a set of built-in types that specify the
data that can be contained by instances of types such as string, int, and float. Because

SOAP is an XML-based protocol, messages can be created and consumed regardless of the
hardware, operating system, or XML processing software used.

The type system is also extensible. XML Schema provides the means to define new simple
types and complex types. A simple type cannot contain any child elements. Complex types
provide a logical way to group related elements and attributes.

A custom type always inherits from another custom type or a built-in type. Simple types can
be derived by restriction using a rich syntax for defining additional constraints. They can also
be derived by list and by union.

Complex types can be derived by restriction or by extension. They can also contain
attributes only (simple content) or attributes and elements (complex content). These
attributes and elements can be locally defined or can be references of globally defined
entities. If the entities within a complex type are locally defined, they should be associated
with the namespace by having their form attribute set to qualified. This makes it easier to
author instance documents that reference a default namespace.

XML Schema enables polymorphic behavior by allowing elements to contain instances of
derived types to appear within the document. XML Schema also allows elements to be
substituted with elements of a compatible type via substitution groups. In order to facilitate
polymorphic behavior, instances of derived types must be able to be substituted in place of
an instance of its base type.

XML Schema also provides mechanisms for restricting inheritance and polymorphic
behavior. Complex type definitions can restrict how the type can be inherited by setting the
final attribute. Element definitions can also restrict the type of substitutions that are allowed
by setting the block attribute.

A schema document can contain element, attribute, and type definitions. These definitions
can be scoped within a particular namespace by setting the targetNamespace attribute
within the schema element. The schema can then be referenced by its namespace within an
instance document. You can reference a hamespace by adding the xmlns attribute to an
element within the document. The reference will be scoped to the element that contains the
xmins attribute and any elements or attributes contained within the element.

A reference to a schema namespace can be assigned a moniker. Any entities referenced
within the schema must then be prefixed by the moniker. By convention, the XML Schema
namespace is assigned the xsd moniker and the XML Schema Instance namespace is
assigned the xsi moniker. Also, if the schema contains references to its own definitions, a
reference to its own namespace is usually assigned the tns moniker.

A reference to a namespace that is not assigned a moniker is used to define the default
namespace. Attributes and elements that are not fully qualified with a prefix that is within the
scope of the default namespace declaration are qualified with respect to the default
namespace.

XML Schema provides a means of creating a schema that is composed of more than one
schema document. The include element is used to include other schema definitions into its
namespace. Schemas that do not define a namespace can be included into any schema. If
the included schema defines a namespace, it must match the target namespace of the
schema that includes it.

XML Schema is the preferred way of describing the schema of messages exchanged
between the client and the server. It provides a robust and flexible way to describe the
structure and the type of data that can appear within an instance document. As you will see

in later chapters, the .NET platform provides a rich framework for creating and consuming
XML Schema schemas for Web services.

Chapter 5: Using WSDL to Document Web
Services

Overview

In the previous chapter, you learned how to create a schema to describe the format of a
SOAP message. You can use XML Schema to describe the layout of a message and the
type of data the message contains, and the resulting schema can be used to validate the
message received by the Web server. However, XML Schema alone cannot fully describe a
Web service.

Let's say | have created a Calculator Web service. The Web service exposes two methods,
Add and Subtract. Both methods accept two integers and return a single integer containing
the result—Add returns the sum of the two integers, and Subtract returns the difference of
the two numbers.

In an effort to describe how a client will interact with my Web service, | define a schema for
the messages that will be exchanged between the client and the server. My schema

contains a complex type definition for the request and response messages for both the Add
and Subtract methods. Remember that the ultimate goal is not to have developers pore
through schema definitions trying to decipher how to interact with a Web service. Instead, |
want to describe my Web service in such a way that a tool can decipher it and create a proxy
on the client’s behalf.

In addition to the information provided by the schema, what else does a client need to know
in order to invoke methods exposed by the Calculator Web service? Because the body of a
SOAP message can contain anything that does not invalidate the XML, individual SOAP
messages can be combined to support a wide variety of message exchange patterns. The
message exchange patterns for the Calculator Web service are pretty straightforward, but a
formal association between the Add and Subtract request messages and their associated
response messages would remove any possible ambiguity.

A formal description of the message patterns is even more important for more complex Web
services. Some Web services might accept a request but not send a corresponding
response back to the client. Others might only send messages to the client.

The schema also does not contain information about how to access the Web service.
Because SOAP is protocol independent, messages can be exchanged between the client
and the server any number of ways. How do you know whether you should send a message
over HTTP, SMTP, or some other transport protocol? Furthermore, how do you know the
address to which the message should be sent?

Web Service Description Language (WSDL) is an XML-based dialect layered on top of the
schema that describes a Web service. A WSDL document provides the information
necessary for a client to interact with the Web service. WSDL is extensible and can be used
to describe practically any network service, including SOAP over HTTP and even protocols
that are not XML-based, such as DCOM over UDP.

In this chapter, | build the WSDL document that describes the Calculator Web service. Along

the way, | describe the various parts of a WSDL document and the roles they play in
describing the Web service.

WSDL Document Syntax

WSDL documents can be intimidating at first glance. But the syntax of a WSDL document is
not nearly as complex as that of an XML Schema document. A WSDL document is
composed of a series of associations layered on top of an XML Schema document that
describes a Web service. These associations add to the size and the perceived complexity
of a WSDL document. But once you look underneath the covers, WSDL documents are
rather straightforward.

The root of a WSDL document is the definitions element. Within this element are five types

of child elements:

] types Contains the schema definitions of the messages that can be sent and received
by the service. The most common way of representing the schema is using XML
Schema.

] message Serves as a cross-reference that associates the message with its definition
within the schema.

] portType Defines a set of interfaces that the Web service can expose. An interface is
associated with one or more messages.

] binding Associates the portType definition with a particular protocol.

] service Defines a collection of related endpoints (ports) exposed by the Web service.

The following diagram illustrates how these five elements are layered on top of the schema
definition to describe the Web service:

]
Binding mluﬂl
L=

ke,

Prodoos]
{SOAR, o2}

i

e

As you can see, a WSDL document is composed of a series of associations. For example,
message parts are used to associate a datatype definition with a portion of the content of a
message.

definitions Element

The root element in a WSDL document, the definitions element, serves much the same role
as the schema element in an XML Schema document. It contains child elements that define
a particular service.

Much like an XML Schema document, a WSDL document can define its own namespace by
adding a targetNamespace attribute to the definitions element. The only restriction is that the
value of the targetNamespace attribute cannot contain a relative URI.

The WSDL namespace allows you to fully qualify references to entities defined within a
WSDL document. For example, a message definition is referenced by a portType definition.

Later in the chapter, | reference entities defined within another WSDL namespace to
facilitate interface inheritance.

The following WSDL fragment defines the definitions element for the Calculator Web service:
<?xm version="1.0"encodi ng="ut f-8"?>

<definiti onstarget Namespace="http://somedonai n/ Cal cul at or/ wsdl "

xm ns:tns="http://sonedomai n/ Cal cul at or/ wsdl "

xm ns="http://schemas. xm soap. org/ wsdl /">
<l --Definitionswllgohere.-->

</ definitions>

The preceding WSDL document contains a definitions element. Within the target
namespace, the target namespace is set to http://somedomain/Calculator. Then a reference
is made to the target namespace, assigning it a prefix of tns:. This prefix will be used within
the document to fully qualify references to entities defined within the document. Finally, the
WSDL namespace is set to the default namespace.

The definitions element defines the boundaries of a particular name scope. Elements

declared within a WSDL document are used to define entities such as ports and messages.
These entities are assigned a name using the name attribute. All name attributes within a

name scope must be unique. For example, if a WSDL document contains a port named Foo,
it cannot contain another port or message named Foo.

It might not always be practical to define a unique fully qualified URI for a namespace—for
example, early in the development cycle or when you want to create a couple of
experimental Web services. In these cases, you can use http://tempuri.org, a special URI
that is used by convention to define namespaces that do not need to be uniquely identified.

types Element

The types element contains schema information referenced within the WSDL document. The
default type system supported by WSDL is XML Schema. If XML Schema is used to define

the types contained within the types element, the schema element will appear as an
immediate child element.

You can use other type systems by extension. If you use another type system, an

extensibility element can appear under the types element. The name of the element should
identify the type system used. In this chapter, | limit my discussion to XML Schema because

it is the dominant type system used in WSDL documents, including those for Web services
developed on the .NET platform.

The Calculator Web service will expose two RPC-style methods, an Add method and a
Subtract method. The messages will be encoded in much the same way that | showed you in
Chapter 4. The only difference is that the schema will be embedded within a WSDL
document, as shown here:

<?xm version="1.0" encodi ng="utf-8"7?>

<definitions target Nanespace="http://sonedomai n/ Cal cul at or/ wsdl "

xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"
xm ns:s="http://somedonai n/ Cal cul at or/ schem"
xm ns="http://schemas. xm soap. org/ wsdl /">

<types>
<schema attri but eFor mDef aul t ="qual i fi ed"
el ement For mDef aul t =" qual i fi ed"
xm ns="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Namespace="htt p:// sonmedonai n/ Cal cul at or/ schema" >
<l-- Definitions for both the Add and Subtract SOAP nessages -

<el ement name="Add" >
<conpl exType>
<al | >
<el enent nanme="x" type="int"/>
<el enent nane="y" type="int"/>
</all>
</ conpl exType>
</ el ement >
<el emrent nanme="AddResul t">
<conpl exType>
<al | >
<el ement name="result" type="int"/>
</all>
</ conmpl exType>
</ el enent >

<el ement name="Subtract">
<conpl exType>
<al | >
<el enent nane="x" type="int"/>
<el ement nanme="y" type="int"/>
</all>
</ conpl exType>
</ el ement >
<el ement nane="Subtract Resul t">
<conpl exType>
<all >

<el ement name="result" type="int"/>

</all>
</ conpl exType>

</ el ement >

<l-- Common SOAP fault detail elenment used by Add and Subtract

>
<el ement nane="Cal cul ateFaul t" >
<conpl exType>
<al | >
<el enent nane="x" type="int"/>
<el ement name="y" type="int"/>
<el ement name="Description" type="string"/>
<lall>
</ conpl exType>
</ el ement >
</ schema>
</types>
<l-- More definitions will go here. -->

</ definitions>

Within the types element are schema definitions for the Add and Subtract methods, which

use the reference to the schema’s namespace that appears within the definitions element
earlier in the document.

WSDL is not limited to describing XML-based serialization formats. You can use it to
describe services that use other formats, including binary. For example, you can use WSDL
to describe a service exposed via DCOM. In this case, you can still use XML Schema to
describe the data being sent across the wire. The WSDL specification provides the following
recommendations for doing so:

= Describe the data using elements, not attributes. For example, each parameter should
be encoded within its own element, much like in SOAP Encoding.

" Describe only data that is related to the message and is not particular to the wire
encoding. For example, the parameters passed to a remote COM object should be
described in the schema. However, the DCOM object identifier (OID) is wire-protocol-
specific data that identifies the object and should not be described in the schema.

= Array types should be derived from the Array complex type defined in the SOAP
Encoding schema. By convention, the name of the type should be the type of items
within the array, prefixed by ArrayOf.

" Parameters that can contain data of any type should be defined by an element of type
xsd:anyType.

message Element

The message element provides a common abstraction for messages passed between the
client and the server. Because you can use multiple schema- definition formats within a

WSDL document, it is necessary to have a common way of identifying the messages. The
message element provides this common level of abstraction that will be referenced in other
parts of the WSDL document.

Multiple message elements can and often do appear in a WSDL document, one for each
message being communicated between the client and the server. Each message contains
one or more part elements that describe pieces of content within the message. An example
of a part is the body of a SOAP message or a parameter contained within the query string, a
parameter encoded in the body of a SOAP message, or the entire body of a SOAP

message.

Each part element contains attributes that associate type and element definitions found in
the types element. Because parts are abstract definitions of content, the binding information
must be examined in order to determine the meaning of the parts.

Two attributes that can appear within the part element are the element and type attributes.
The element attribute refers to an element definition in a schema. The type attribute refers to
a type definition in a schema.

Because the Calculator Web service contains two methods, each with a request and
response message, and a fault message was defined, the WSDL document will contain five
message elements:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://sonedomai n/ Cal cul at or/ wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns:s="http://somedonai n/ Cal cul at or/ schem"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type definitions renoved for clarity -->

<message nanme="AddMsgln">
<part nane="paraneters" el enent="s:Add"/>
</ message>
<message nane="AddMsgQut">
<part nane="paraneters" el enent="s:SubtractResult"/>
</ nessage>
<nessage nanme="Subtract Msgl n">
<part nanme="paraneters" elenment="s:Add"/>
</ nmessage>
<nessage name="Subtract MsgQut " >
<part nane="paraneters" el enent="s:SubtractResult"/>
</ message>
<nessage name="Cal cul at eFaul t Msg" >
<part nane="fault" elenment="s:Cal cul ateFault"/>

</ message>
<l-- Mre definitions will go here. -->

</ definitions>

| created a message element for the request and response message of the Add and

Subtract methods. | could have instead specified a part element for each parameter. For
example, the AddMsgln message could have been written as follows:

<nessage name="AddMsgl n">
<part nane="x" type="xsd:int"/>
<part nane="y" type="xsd:int"/>
</ message>

Parameters x and y are contained within their own part of the message. The protocol binding
will have a lot of influence over how messages are represented. When | discuss binding later
in the chapter, | will represent each parameter contained within an HTTP query string as its
own message part.

Because each part can serve as an abstract definition of a piece of data, a message can be
composed of multiple pieces of data from multiple sources. Although it is not recommended,
you could describe a message in which some of the parameters were encoded within a
SOAP body and some of the parameters were encoded within the query string.

portType Element

The portType element contains a set of abstract operations representing the types of
correspondences that can occur between the client and the server. For RPC-style Web
services, a portType can be thought of as an interface definition in which each method can
be defined as an operation.

A port type is composed of a set of operation elements that define a particular action. The
operation elements are composed of the messages defined within the WSDL document.
WSDL defines four types of operations, known as operation types:

. Request-response RPC-style communication in which the client makes a request
and the server issues a corresponding response.

" One-way Document-style communication in which the client sends a message but
does not receive a response from the server indicating the result of the processed
message.

= Solicit-response The opposite of the request-response operation. The server sends
a request, and the client sends back a response.

" Notification The opposite of the one-way operation. The server sends a document-
style communication to the client.

An operation is composed of a subset of input, output, and fault elements. The type of
elements and the ordering of the elements within the operation determine the type of
operation. For example, one-way defines an input message, and request-response defines
an input and an output message. The solicit-response and the notification operation types
are the opposite of request-response and one-way, respectively. The solicit-response
operation lists the output message and then the input message, and the notification
operation contains an output message instead of an input message.

Table 51 lists the type and ordering of messages for each operation type.
Table 5-1: Message Ordering for Operation Types

Operation input output fault
Type
Request- 1 2 3!
response
| One-way | 1 ‘
Solicit- 2 1 3t
response
| Notification | 1 ‘
1. The fault message is optional. Any number of fault messages can appear in an
operation.

Operations involving two-way communication can optionally specify one or more fault

messages. Like Java method definitions, fault messages allow you to declare the type of
exceptions that can be thrown by the server application. However, the list of possible faults

should not include errors that are specified by the underlying transport protocol. For
example, you would not need to represent the HTTP 500 error in the WSDL document.

The names of the input, output, and fault elements have a default value if one was not
specified. For one-way and notification operation types, the default name is the name of the
operation element in which they are contained. For request-response operation types, the
name of the input and output elements default to the name of the operation with Request or
Response appended to the end. For solicit-response, the name of the output element
defaults to the name of the operation with Solicit or Response appended to the end.

Because multiple fault elements can be defined within an operation, there is no default name
for the fault element. Therefore, each fault element must be uniquely named within its parent
operation element.

Here is the portType definition for the Calculator Web service:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type and message definitions renoved for clarity -->

<port Type nanme="Cal cul at or Port Type" >
<operation name="Add" >
<i nput nmessage="tns: AddMsgl n"/ >
<out put nessage="tns: AddMsgQut "/ >
<fault nmessage="tns: Cal cul at eFaul t Msg" nane="Cal cul at eFaul t"/ >

</ oper ati on>

<operation name="Subtract">

<i nput nmessage="tns: Subtract Msgl n"/>

<out put message="tns: Subtract MsgQut "/ >

<fault message="tns: Cal cul at eFaul t Msg" nane="Cal cul at eFaul t"/ >
</ operation>

</ port Type>
<l-- Mre definitions will go here. -->

</ definitions>

The preceding snippet of the Calculator WSDL document defines the portType named
CalculatorPortType. It contains two request-response operations, Add and Subtract.
Because the operations are of type request-response, they both define an input and an
output message. Both operations also contain a fault element named CalculateFault.

RPC-style operations can optionally use the parameterOrder attribute to specify the order of
the expected parameters. This attribute is of type nmTokens and contains a list of names of
the parameters. Because SOAP specifies a clear way to serialize parameters and the name
and ordering of the parameters can be described using XML Schema, this attribute is not
often used.

Some services described using WSDL can support overloaded methods— methods that
have the same name but accept a different set of parameters. Therefore, within a portType
definition, more than one operation element can have the same name but specify different
messages. In this case, the different operation elements must be identified by the
combination of the operation name plus the name of the input, output, and fault elements. As
a result, the default name for the input, output, and fault elements might not ensure that
operation elements with the same name can be uniquely identified.

binding Element

The binding element contains binding definitions for binding a protocol such as SOAP to a
particular bindingType. The binding definitions specify message formatting and protocol
details. For example, the binding information specifies whether you can access an instance
of a portType in an RPC-like manner.

The binding definitions also indicate the number of network communications required to
perform a particular action. For example, a SOAP RPC call over HTTP might involve one
HTTP communication exchange, but that same call over SMTP would involve two discrete
SMTP communication exchanges.

Binding is accomplished through the use of extension elements. Each protocol has its own
set of extension elements for specifying the details of the protocol and the formatting of the
messages. For a particular protocol, extension elements are often used to decorate the
individual actions within an operation and the operation itself with protocol binding
information. Sometimes, extension elements are used at the portType level itself.

The following simplified WSDL document shows the binding for the Calculator Web service.
It also contains placeholders for extensibility elements to show where they can be placed in
relation to the containing binding element. (I discuss extensibility elements defined by the
WSDL specification later in the chapter.)

<?xm version="1.0" encodi ng="utf-8"?>
<definitions xmns:ext="http://somedomai n/ MyBi ndi ngExt"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, nessage, and port type definitions renoved for clarity
-->
<l-- Al attributes also renoved for clarity -->

<bi ndi ng nanme="Cal cul at or Bi ndi ng" type="tns: Cal cul at or Port Type>
<ext: SomeExt El enent / >
<operati on nane="Add">
<ext: SonmeExt El emrent / >
<i nput >
<ext: SoneExt El enent / >
</i nput >
<out put >
<ext: SonmeExt El enent / >
</ out put >
<faul t>
<ext: SonmeExt El enent / >
</faul t>
</ operation>
<operation name="Subtract">
<ext : SoneExt El emrent / >
<i nput >
<ext : SomeExt El ement / >
</i nput >
<out put >
<ext: SoneExt El enent / >
</ out put >
<fault>
<ext: SoneExt El enent / >
</faul t>
</ operation>
</ bi ndi ng>

<l-- Mre definitions will go here. -->

</ definitions>

The binding element is associated with a particular portType element via the type attribute.
In the preceding WSDL document, | associated the binding named CalculatorBinding with

the CalculatorPortType port type. Within the binding element, | created two operation
elements to correlate to those defined in the portType element.

Each operation element must have corresponding input, output, and fault elements defined

in the portType element. In addition, the names of the operation element and its child input,
output, and fault elements must exactly match the names of their counterparts defined in the
corresponding portType element.

service Element

A service is a group of related ports and is defined by the service element. A portis a
particular endpoint for the Web service that is referenced by a single address. Ports defined

within a particular service are orthogonal. For example, the output of one port cannot serve
as the input of another.

Here is a simplified service definition for the Calculator Web service. The document contains

placeholders for extensibility elements to show where they can be placed in relation to the
containing service element:

<?xm version="1.0" encodi ng="utf-8"?>
<definitions xmns:ext="http://somedomai n/ MyBi ndi ngExt "
xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, message, port type, and binding definitions renmoved for
clarity -->

<l-- Al attributes also renopved for clarity -->

<servi ce nane="Cal cul at or Servi ce">
<ext: SonmeExt El enent / >
<port nane="Cal cul atorPort" bi ndi ng="tns: Cal cul at or Bi ndi ng" >
<ext: SonmeExt El emrent / >
</ port>

</ service>

<l-- Moire definitions will go here. -->

</ definitions>

The service element is used to group a set of related ports. The preceding WSDL document
defines a service called CalculatorService. It contains one port called CalculatorPort.
CalculatorPort is associated with the binding element CalculatorBinding.

A port contains an extension element that provides the address where it is located. If you
need to specify more than one address, you must create one port for each address. If you
define multiple ports of the same port type (and possibly different addresses) within the
same Web service, they should be considered alternatives.

They should provide the same behavior, but over different transport protocols. The client can
iterate through the ports to find a compatible binding with an appropriate portType and

protocol.

Extensibility Elements

Extensibility elements are used to repres ent particular technologies. For example, you can
use extensibility elements to specify the schema language used within the types element.

The schema for a particular set of extensibility elements must be defined within a different
namespace than WSDL. The definition of the elements themselves can contain a
wsdl:required attribute that specifies a Boolean value. If the required attribute is set to true
within an element definition, a binding that references the particular set of extensibility
elements must include that element.

Most often, extensibility elements are used to specify binding information. The WSDL
specification defines sets of extension elements for binding to SOAP, HTTP GET, HTTP
POST, and MIME. However, the specification defines the bindings for only two of the four
operation types, one-way and request- response. Let’s look at the three bindings supported
by the .NET platform: SOAP, HTTP GET, and HTTP POST.

SOAP Extensions

The SOAP extensions provide a set of elements for binding a port type to a SOAP message
sent over a particular transport protocol. For example, SOAP extension elements are used to
indicate where the individual parts are located within the SOAP message. They are also
used to indicate the transport protocol used to send the SOAP message.

SOAP extension elements are contained within the http:/schemas.xmlsoap.org/wsdl/soap/

namespace. The convention | use in the rest of this chapter is to associate references to the
namespace with the soap: moniker.

binding Element Binding

Extensibility elements added to the binding element provide information about how the
parameters are encoded within the SOAP message. Extensibility elements are added to the
bind, operation, input, output, and fault messages. They provide information about the
transport protocol used to send the SOAP message and how the data is encoded within the
SOAP envelope.

The soap:binding element’s primary purpose is to signal that SOAP binding is applied to a

particular binding definition. Therefore, all binding elements containing SOAP specific
binding must contain the soap:binding element. The soap:binding element can also be used

to specify the style of the message and the transport protocol that will be used to send the
SOAP message. The following portion of the Calculator Web service WSDL document
demonstrates the use of the soap:binding element:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns: tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, nmessage, and port type definitions renoved for clarity
>

<bi ndi ng name="Cal cul at or Bi ndi ng" type="tns: Cal cul at or Port Type" >
<soap: bi ndi ng styl e="docunent"

transport="http://schemas. xm soap. org/ soap/ http"/>

<l-- Operation elenments removed for clarity -->
</ bi ndi ng>
<l-- More definitions will go here. -->

</ definitions>

The soap:binding element can contain a transport attribute to specify a transport. The
transport attribute must contain a URI that uniquely identifies the transport. The only URI
defined in the specification is for the HTTP transport:

Because the soap:binding element is applied to the entire binding definition, it will apply to aII
operations referenced by the binding definition.

The style of the message is indicated by the style attribute. The value is either rpc or
document. If the style is set to rpc, each part within the operation will represent a parameter.
The parameters must be encoded in the body of the SOAP message in a struct-like fashion
as dictated by the SOAP specification. The name of the operation element must match the
name of the element that contains the parameters in the SOAP message. If the style is set to
document, the message parts will appear directly within the body of the SOAP message.

As you will see shortly, the message style can also be set at the operation level. Because
the style attribute defined at the operation level takes precedence, setting the style attribute

within the soap:binding element does not determine the message style; it merely sets the
default value. If the style attribute is not set, the default value is document.

The soap:operation element provides binding information for the operation as a whole. You
can use it to specify the document style as well as the SOAPAction HTTP header value for
HTTP bindings. The following portion of the Calculator Web service WSDL document

demonstrates the use of the soap:binding element:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns:tns="htt p://somedomai n/ Cal cul at or/ wsdl "

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, nmessage, and port type definitions renoved for clarity
-->

<bi ndi ng name="Cal cul at or Bi ndi ng" type="tns: Cal cul at or Port Type">
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xm soap. org/ soap/ http"/>

<oper ati on name="Add">
<soap: operation soapAction=http://somedomai n/ Cal cul at or/ Add"/ >
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
<faul t>
<soap: fault nanme="Cal cul ateFault" use="literal "/>
</fault>
</ operati on>
<operation nanme="Subtract">

<soap: operation
soapActi on=http://sonmedonmai n/ Cal cul ator/ Subtract"/ >

<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
<faul t>
<soap: fault nanme="Cal cul ateFault" use="literal "/>
</fault>
</ operation>
</ bi ndi ng>

<l-- Mre definitions will go here. -->

</ definitions>

As | mentioned earlier, the style attribute can be set to either rpc or document to indicate the
style of the message.

The soapAction attribute specifies the value of the SOAPAction header. The soapAction
attribute is required if HTTP is the transport protocol. The value can be blank if the HTTP
request URL adequately describes the intent of the message. The client should pass the
value of the soapAction attribute unchanged when sending a message to the Web service. If
the protocol is not HTTP, the soapAction attribute can be omitted.

The soap:body element specifies how parts of the message are encoded inside the SOAP
message body. This element is used to specify which parts of a message appear within the
SOAP message body. It can also be used to declare the type of encoding used to serialize
the parts within the message body.

You can optionally specify the list of parts that can be found within the body of the SOAP
message. The parts attribute can contain a list of named tokens, where each token is the
name of a part contained within the SOAP body. If the parts attribute is not specified, all
parts defined by the message are assumed to be included in the SOAP body. An example of
where the parts attribute would be used is if an HTTP message contained a multipart
message that included a SOAP message in addition to a MIME attachment. One part of the
message not included in the SOAP body would be the attachment itself.

Sometimes a schema alone cannot adequately represent the way in which data can be
serialized. For example, SOAP Encoding defines multiple ways that an array can be
serialized: the entire array, a partial array, or a sparse array. (See Chapter 3 for more
information.)

The use attribute is required and must be either literal or encoded. The literal value means
that parts within the SOAP body must comply with the schema. The part within the message
definition must reference the schema using either the type or element attribute.

If parts within the body should be serialized using a particular method of encoding, the value
of the use attribute should be encoded. Each part of the message encoded within the SOAP
body must reference an abstract type using the type attribute. For example, a part containing
a SOAP array would reference the SOAP Array type. If the encoding style supports
variations in the way data can be encoded (such as the SOAP Array type), the service must
support all of these variations.

If parts of a message are based on abstract type definitions rather than a concrete format
specified by a schema definition, the encoding style should be referenced. The encoding
style is specified by the wsdl:encodingStyle attribute and can contain a white-space-
delimited list of URIs (similar to the encodingStyle attribute defined by SOAP).

If an encodingStyle attribute is specified for a message part and the use attribute is set to
literal, the encodingStyle will serve as a hint about how the data is encoded. This is handy if
you want to accept only one variation of a particular SOAP encoded datatype. For example,
a Web service might accept only SOAP arrays that are fully serialized.

service Element Binding

The only SOAP extension element specified within the service element is soap:address. It is
contained within the port definition and is used to specify the URI of an endpoint or port
where the Web service can be reached.

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, nessage, port type, and binding definitions renoved for

clarity -->

<servi ce name="Cal cul at or Servi ce">
<port nane="Cal cul ator Port" bi ndi ng="tns: Cal cul at or Bi ndi ng" >
<soap: address | ocation="http://somedonmai n/ Cal cul ator "/ >

114

</ port>
</ service>

</ definitions>

The service definition states that the Calculator Web service can be reached at
http://somedomain/Calculator. If the address cannot be specified by a URI, the soap:address

element can be replaced with a custom address element that does properly specify the
location.

HTTP GET/POST Extensions

Sometimes it is desirable to invoke a Web service by passing the parameters as nhame/value

pairs using the same mechanism as a standard HTML form post. Parameters can be passed
via the query string or a form POST. This sometimes makes it easier for a client to invoke a
Web service without having to create a well-formed SOAP message.

The HTTP GET/POST extensions provide a set of elements for binding port types to the
SOAP protocol. For example, SOAP extension elements are used to indicate where the

individual parts are located within the SOAP message. They are also used to indicate the
transport protocol used to send the SOAP message.

In this section, | create two additional bindings for the Calculator Web service, one for HTTP
GET and one for HTTP POST. | have a lot of freedom in how | specify the binding, so | will
create bindings that closely parallel how Web services developed on the .NET platform
behave. In particular, Web services developed using the .NET platform accept standard
name/value pairs that are URL encoded and either appended on the query string or POSTed
within the body of the HTTP request message. If results are returned, they are passed as a

simple XML document in the body of the HTTP response message.

Before | specify the binding information, | need to create an additional element declaration to
hold the value of the return parameters. Because individual parameters must be represented
as individual parts of a message, | also need to create a couple of new message definitions
for the Add and Subtract methods, where each parameter is contained within its own
message part. Here are the additions:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Nanespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns:tns="http://somedonai n/ Cal cul at or/ wsdl "

xm ns:s="http://somedonai n/ Cal cul at or/ schem"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"

xm ns: mi me="http://schemas. xm soap. org/ wsdl / mi me/ "

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Note: Previously defined type definitions onmitted for clarity
-->
<types>

<schema attri buteFormDefaul t="qualified"
el ement For mDef aul t ="qual i fi ed"

xm ns="http://ww.w3. org/ 2001/ XM.Schem"

t ar get Namespace="htt p://somedomai n/ Cal cul at or/ schema" >
<l-- Common result elenment for HITTP GET/ POST binding -->
<el ement name="Result" type="int"/>

</ schema>
</types>

<!l -- Messages for HITP GET/ POST-based Wb service -->
<l-- Note: Previously defined nessages ontted for clarity -->
<message nane="AddHtt pMsgl n" >
<part nane="x" type="xsd:string"/>
<part nane="y" type="xsd:string"/>
</ message>
<nmessage nanme="AddHtt pMsgQut" >
<part nane="result" elenent="s:Result"/>
</ message>
<nessage name="Subtract Htt pMsgl n">

<part nanme="x" el ement ="xsd:string"/>

<part nane="y" el ement ="xsd:string"/>
</ message>
<nessage name="Subtract Htt pMsgQut " >
<part nane="result" elenent="s:Result"/>

</ message>

<l-- More definitions will go here. -->

</ definitions>

The preceding WSDL document defines a new element of type int called Result that will be
used to contain the result of the Add and Subtract methods returned to the client. This
element is referenced by two new outbound messages, one for each method. The document
also defines new inbound messages for the Add and Subtract methods. The outbound
messages define individual parts for each parameter. Since the name/value pairs containing
the parameters are not strongly typed, the type of each part is defined as string.

HTTP GET/POST extension elements are contained within the
http://schemas.xmlsoap.org/wsdl/http/ namespace. The convention | follow throughout the
remainder of this chapter is to associate references to the namespace using the http:
moniker. In a few scenarios, HTTP GET/POST bindings leverage the MIME extension
elements. They are defined within the http://schemas.xmlsoap.org/wsdl/mime/ namespace

and referenced using the mime: moniker.

binding Element Binding

Extensibility elements added to the binding element provide information about how the
parameters are encoded within the HTTP message. Extensibility elements are added to the

bind, operation, input, output, and fault messages.

The http:binding element specifies whether the parameters are passed within the URL or
within the body of the HTTP request: The “verb” of the http:binding attribute is set to either
GET or POST. The following WSDL document demonstrates the use of the http:binding
element within the definition of the Calculator Web service:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Nanespace="http://somedonsi n/ Cal cul at or/ wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l -- Type, nmessage, and port type definitions renoved for clarity
-->

<bi ndi ng nanme="Cal cul at or Ht t pGet Bi ndi ng"
type="tns: Cal cul at or Port Type"/ >

<ht t p: bi ndi ng verb="CET"/>

<l-- Operation elements rempbved for clarity -->
</ bi ndi ng>
<l-- More definitions will go here. -->

</ definitions>

The http:operation element specifies the relative address for each operation. Each input and
output message is decorated with an extension element that indicates the method used to
encode the parameters passed to the Web service. The three upcoming scenarios for
encoding the parameters show the URL encoding of parameters on the query string,
nonstandard encoding within the URL, and URL encoding of the parameters in the body of
the post.

Parameters can be passed to a Web service via a URL encoded within the query string. URL
encoding specifies appending a ? to the end of the URL and then appending a hame/value
pair separated with an =. If multiple name/value pairs are appended to the URL, they are
separated from each other by an &. For example, the Add method can be called as follows:

http://somedomai n/ Cal cul at or/ Add?x=2&y=3

In this case, the input element within the binding for a particular operation would be
decorated with an http:urlEncoded element. Here is the resulting HTTP GET binding

definition for the Calculator Web service:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Nanespace="http://sonmedomai n/ Cal cul at or/ wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"

17

xm ns="http://schemas. xm soap. org/ wsdl /">

<l -- Type, nessage, and port type definitions renoved for clarity
-->

<bi ndi ng name="Cal cul at or Ht t pCet Bi ndi ng"
type="tns: Cal cul at or Port Type"/ >

<ht t p: bi ndi ng verb="CGET"/ >
<oper ation name="Add">
<htt p: operation | ocation="/Add"/ >
<i nput >
<htt p: url Encoded/ >
</i nput >
<out put >
<m me: m meXm part="Body"/>
</ out put >
<faul t >
<mi me: mmeXm part="Fault"/>
</faul t>
</ operation>
<operation nanme="Subtract">
<htt p: operation | ocation="/Subtract"/>
<i nput >
<htt p: url Encoded/ >
</i nput >
<out put >
<m me: m meXm part="Body"/>
</ out put >
<fault>
<m me: mmeXm part="Fault"/>
</faul t>
</ operation>

</ bi ndi ng>

<l-- More definitions will go here. -->

</ definitions>

Parameters can also be encoded within the URL in a nonstandard way. In this case, the
location attribute of the http:operation element will contain information about how the
parameters are encoded. For example, the parameters for the Add method could be
encoded within the URL as follows:

htt p://somedonai n/ Cal cul at or/ Add/ 2pl us3

The parameters 2 and 3 were encoded within the path info of the URL where the parameters
were delimited by plus. The resulting http:operation element would appear as follows within
the binding definitions:

<http: operation |ocation="Add/ (x)plus(y)"/>

The individual message parts enclosed in parentheses are shown in their respective position
within the relative URL. In this case, the input element within the binding for a particular
operation would be decorated with an http:urlReplacement element.

The third and final way of encoding the parameters that | will discuss is embedding the URL
encoded parameters within the body of the HTTP request message (HTTP POST). For
example, the parameters would be encoded within the body of the HTTP request as follows:

Add="x=2&y=3"
In this case, the input element can be described using the MIME type application/x-ww-

form-urlencoded. Therefore, the operation element would be decorated with a mime:content
element. Here is the resulting HTTP POST binding definition for the Calculator Web service:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Nanespace="http://somedomai n/ Cal cul at or/ wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, nessage, and port type definitions renoved for clarity
-->

<bi ndi ng name="Cal cul at or Ht t pPost Bi ndi ng"
type="tns: Cal cul at or Port Type"/ >

<htt p: bi ndi ng ver b="POST"/ >
<operation name="Add">
<htt p: operation | ocation="/Add"/>
<i nput >
<m me: content type="application/x-ww:form url encoded"/ >
</i nput >
<out put >
<mi me: m meXm part="Body"/>
</ out put >
<faul t>
<soap: fault name="Cal cul ateFault" use="literal "/>
</faul t>
</ oper ati on>
<operati on name="Subtract">
<htt p: operation |ocation="/Subtract"/>

<i nput >
<m me: content type="application/x-ww:form url encoded"/ >
</i nput >
<out put >
<mi me: m meXm part="Body"/>
</ out put >
<faul t>
<soap: fault name="Cal cul ateFault" use="literal "/>
</faul t>
</ operation>
</ bi ndi ng>

<l-- More definitions will go here. -->

</ definitions>

The type attribute contains a valid MIME type used to indicate the type of content contained
within the body of the HTTP message. The content of the HTTP message can also be
labeled as being a member of a family of MIME types by using a wildcard. Here are a couple
of examples:

<l -- The content belongs to the MME fam |y of text types. -->
<m ne:content type="text/*"/>

<l-- Either declaration specifies all MM types. -->

<m ne:content type="text/*"/>
<m ne: content/>

The mime:content element can also contain a part attribute, which is used to specify which
part is contained within the body of the HTTP message.

If the message has a MIME type of multipart/related, the message can contain a collection of
MIME-formatted parts. For example, a multipart message can contain a SOAP message
(text/xml) along with a JPEG image (image/jpeg).

A multipart message can be represented within the binding definition using the
mime:multipartRelated element. The mime:multipartRelated element contains a collection of
mime:part elements. Each mime:part element represents a particular MIME -formatted part
where its type is declared using the mime:content element.

The following example demonstrates how a multipart message containing a SOAP message
and a JPEG image is represented within a WSDL document:

<m ne: nul ti part Rel at ed>
<m ne: part>
<soap: body use="Iliteral" part="xyCoordi nates"/>
</ m ne: part >
<m ne: part >

<m nme: content type="inmge/jpeg" part="graph"/>
</ m ne: part>

</m me:mul tipartRel at ed>

Notice that you can use the soap:body element to indicate that a particular MIME part
contains a SOAP message. The message part is assumed to have a MIME type of text/xml
and be contained within a valid SOAP envelope.

If the MIME message part contains XML but is not SOAP compliant, you can use the
mime:mimeXml element. The associated part element defines the root XML element instead

of the body of a SOAP message. This element is used extensively in ASP.NET because the
HTTP GET/POST version of a Web service returns the results using non-SOAP-compliant
XML.

service Element Binding

The only HTTP extension element specified within the service element is http:address. Like
its SOAP counterpart, it is contained within the port definition and is used to specify the URI
where the Web service can be reached. Here is the service definition for the Calculator Web
service:

<?xm version="1.0" encodi ng="utf-8"7?>

<definitions target Nanespace="http://somedonai n/ Cal cul at or/ wsdl "
xm ns:tns="http://somedonai n/ Cal cul at or/ wsdl "

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- Type, message, port type, and binding definitions renmoved for
clarity -->

<servi ce nanme="Cal cul at or Servi ce" >

<port nane="Cal cul ator H t pGet Port"
bi ndi ng="t ns: Cal cul at or Ht t pGet Bi ndi ng" >

<http: address | ocation="http://somedonmai n/ Cal cul ator"/ >
</ port>

<port nane="Cal cul at or Ht t pPost Port"
bi ndi ng="t ns: Cal cul at or Ht t pPost Bi ndi ng" >

<http::address | ocation="http://sonmedonmai n/ Cal cul ator"/>
</ port>

</ service>

</ definitions>

The preceding WSDL document defines two ports, one for HTTP GET and the other for
HTTP POST. Both ports can be reached at http://somedomain/Calculator.

import Element

Like XML Schema documents, WSDL documents can import other documents. You can thus
achieve the same level of modularity that you can with XML Schema documents. Because a

WSDL document can get rather large rather quickly, breaking it up into a number of smaller
documents can help make the document easier to understand and possibly easier to
maintain.

A common way to divide a single service definition into multiple WSDL documents is to place
protocol binding information in a separate document. This allows you to write the interface
definitions once and then import them into a WSDL document that defines the specific
protocols supported by a particular instance of the Web service.

Unlike its XML Schema counterpart, the import element must contain both a namespace and
a location attribute. Imagine that | took the WSDL document for the Calculator Web service
and separated it into three parts. | placed the schema definitions into Calculator.xsd, the
interface definitions into i_Calculator.wsdl, and the protocol into Calculator.wsdl.
Calculator.wsdl serves as the WSDL document for the Web service by importing the other
two documents. Here is Calculator.wsdl:

<definitions xm ns="http://schemas. xm soap. org/ wsdl /">

<l-- First inport the schema definitions. -->
<i mport nanmespace="http://sonmedonmai n/ nyschena/"
| ocati on="http://somedomai n/ Cal cul at or. xsd">

<l-- Next inport the port types and nessage definitions. -->
<i mport nanespace="http://sonmedomai n/ Cal cul ator/"
| ocation="http://sonedonmain/i_Cal cul at or. wsdl ">

<l-- Finally provide the protocol -specific binding definitions. --

</ definitions>

Documentation

You can include documentation within a WSDL document by using the definitions element’s
name attribute or the document element. The name attribute can contain a short description
of the WSDL document, and the document element can contain text as well as other
elements. For example, | could use the document element to record metadata about the

document.
<definitions xm ns="http://schemas. xm soap. org/ wsdl /"

nanme="The Cal cul ator Web service provides the results of adding and
subtracting two nunbers.">
<docunent >
<aut hor >Scott Short </ aut hor >
<versi on>1. 0</ versi on>
</ docunent >

<types>
<docunent >The follow ng are defined using XM. Schema. </ docunent >

<l-- Type definitions renoved for clarity -->
</types>
<l-- Additional definitions renoved for clarity -->

</ definitions>

As you can see, the document element can be used inside any WSDL language element.

The Calculator Web Service WSDL Document

Here is the WSDL document that | built over the course of this chapter:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions target Namespace="http://somedomai n/ Cal cul at or/wsdl "
xm ns:tns="http://somedomai n/ Cal cul at or/ wsdl "

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"

xm ns:s="http://somedonai n/ Cal cul at or/ schem"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"

xm ns: m me="http://schemas. xm soap. org/ wsdl / m e/ "

xm ns="http://schemas. xm soap. org/ wsdl /">

<t ypes>

<schema attri buteFormDefaul t="qualified"
el ement For nDef aul t =" qual i fi ed"

xm ns="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Namespace="htt p:// sonmedonai n/ Cal cul at or/ schema" >
<l-- Definitions for both the Add and Subtract SOAP nessages -

<el ement name="Add" >
<conpl exType>
<al | >
<el enent nane="x" type="int"/>
<el enent nane="y" type="int"/>
<lall>
</ conpl exType>
</ el ement >
<el ement nanme="AddResul t">
<conpl exType>

<al |l >

<el ement name="result" type="int"/>
</all>
</ conmpl exType>
</ el enent >

<el ement name="Subtract">
<conpl exType>
<all >
<el enent nane="x" type="int"/>
<el ement nanme="y" type="int"/>
</all>
</ conpl exType>
</ el enent >
<el ement nane="Subtract Resul t">
<conpl exType>
<al | >
<el ement name="result" type="int"/>
</all>
</ conpl exType>
</ el ement >

<l-- Common SOAP fault detail elenment used by Add and Subtract

--2>
<el ement nane="Cal cul ateFaul t" >
<conpl exType>
<al | >
<el enent nane="x" type="int"/>
<el enent nane="y" type="int"/>
<el ement nanme="Description" type="string"/>
</all>
</ conpl exType>
</ el enent >
<l-- Common result elenment for HITP GET/ POST binding -->
<el ement name="Result" type="int"/>
</ schema>
</types>

124

<l -- Messages for SOAP-based Wb service -->
<message nane="AddMsgln">
<part name="paraneters" el enment="s:Add"/>
</ message>
<nmessage nanme="AddMsgQut ">
<part nane="paraneters" el enent="s:SubtractResult"/>
</ message>
<nmessage nanme="Subtract Msgl n">
<part nane="paraneters" el enent="s:Add"/>
</ message>
<nmessage nanme="Subtract MsgQut" >
<part nane="paranmeters" elenent="s:SubtractResult"/>
</ nessage>
<nessage nanme="Cal cul at eFaul t Msg" >
<part nane="fault" element="s:Cal cul ateFault"/>

</ message>

<!-- Messages for HITP GET/ POST- based Wb service -->
<nmessage name="AddH t pMsgl n" >
<part nane="x" type="xsd:string"/>
<part nane="y" type="xsd:string"/>
</ message>
<nmessage nanme="AddHtt pMsgQut " >
<part nane="result" elenent="s:Result"/>
</ message>
<nmessage nanme="SubtractHtt pMsgl n">
<part nanme="x" el ement ="xsd:string"/>
<part nanme="y" el ement ="xsd:string"/>
</ message>
<nmessage name="Subtract Htt pMsgQut " >
<part nane="result" elenent="s:Result"/>
</ message>

<port Type nane="Cal cul at or Port Type" >
<oper ation name="Add">
<i nput nessage="tns: AddMsgl n"/>
<out put message="tns: AddMsgQut"/ >
<fault message="tns: Cal cul at eFaul t Msg" nane="Cal cul at eFaul t"/ >

</ operati on>

<operation name="Subtract">

<i nput nmessage="tns: Subtract Msgl n"/>

<out put nessage="tns: Subtract MsgQut"/>

<fault message="tns: Cal cul at eFaul t Msg" nane="Cal cul at eFaul t"/ >
</ operation>

</ port Type>

<l -- SOAP Binding -->

<bi ndi ng nane="Cal cul at or Bi ndi ng" type="tns: Cal cul at or Port Type" >
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xm soap. org/ soap/ http"/>
<operation name="Add">

<soap: operati on
soapAction="http://sonedonmai n/ Cal cul at or/ Add"/ >

<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
<faul t>
<soap: fault nane="Cal cul ateFault" use="literal"/>
</fault>
</ operation>
<operation nanme="Subtract">

<soap: operati on
soapAction="http://sonmedonmai n/ Cal cul at or/ Subtract"/>

<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
<faul t>
<soap: fault nane="Cal cul ateFault" use="literal"/>
</fault>
</ operation>

</ bi ndi ng>

<l-- HITP GET Binding -->

<bi ndi ng nanme="Cal cul at or Ht t pGet Bi ndi ng"
type="tns: Cal cul at or Port Type" >

<ht t p: bi ndi ng verb="CET"/ >
<oper ati on name="Add">
<http:operation |ocation="/Add"/>
<i nput >
<htt p: url Encoded/ >
</i nput >
<out put >
<m me: m meXm part="Body"/>
</ out put >
<faul t>
<mi me: m meXm part="Fault"/>
</faul t>
</ operation>
<operation nane="Subtract">
<http: operation |ocation="/Subtract"/>
<i nput >
<htt p: url Encoded/ >
</i nput >
<out put >
<m nme: m nmeXm part="Body"/>
</ out put >
<faul t >
<m me: m meXm part="Fault"/>
</faul t>
</ operation>
</ bi ndi ng>

<l-- HTTP POST Bi nding -->

<bi ndi ng name="Cal cul at or Ht t pPost Bi ndi ng"
type="tns: Cal cul at or Port Type" >

<ht t p: bi ndi ng verb="POST"/ >
<oper ation nanme="Add">
<htt p: operation | ocation="/Add"/>
<i nput >
<m me: content type="application/x-ww form url encoded"/>
</i nput >
<out put >
<m me: m nmeXm part="Body"/>
</ out put >

<faul t>
<soap: fault nane="Cal cul ateFault" use="literal"/>
</faul t>
</ operation>
<operation nane="Subtract">
<http: operation | ocation="/Subtract"/>
<i nput >
<m me: content type="application/x-wwformurlencoded"/>
</i nput >
<out put >
<m me: m nmeXm part="Body"/>
</ out put >
<fault>
<soap: fault nane="Cal cul ateFault" use="literal"/>
</faul t>
</ operation>
</ bi ndi ng>

<service nane="Cal cul at or Servi ce">
<port name="Cal cul atorPort" binding="tns: Cal cul at or Bi ndi ng" >
<soap: address | ocation="http://somedomai n/ Cal cul ator"/ >
</ port>

<port nane="Cal cul ator H t pGet Port "
bi ndi ng="t ns: Cal cul at or Ht t pGet Bi ndi ng" >

<htt p: address | ocati on="http://sonmedomai n/ Cal cul ator"/ >
</ port>

<port nane="Cal cul at or Ht t pPost Port"
bi ndi ng="t ns: Cal cul at or Ht t pPost Bi ndi ng" >

<htt p: address | ocati on="http://somedomai n/ Cal cul ator"/ >
</ port>

</ service>

</ definitions>

Summary

WSDL provides a flexible and extensible means of documenting network services. A WSDL
document is composed of five elements under the root definitions element: types, message,
portType, binding, and service. These elements are used to define Web services through a
series of associations.

The types element contains schema definitions for the data exchanged between the client
and the server. The default schema language is XML Schema. However, you can specify

another schema language through the use of extensibility elements.

The message element identifies a particular message that is exchanged between the client
and the server. A message is composed of one or more parts. Each part is represented by
the part element and can refer to an element or type definition defined within the types
element.

The portTypes element contains one or more operation elements. You can think of an
operation as an interface—a contract about how the client and the server will interact with

each other to perform an action. An operation can be one of four types: request-response,
solicitresponse, one-way, or notification.

The binding element is used to associate a port type with a particular protocol. This is
accomplished via extensibility elements. Extensibility elements are elements defined outside
the WSDL namespace. The WSDL specification defines three sets of extensibility elements
for specifying binding information: SOAP, HTTP GET/POST, and MIME. Because specific
technologies such as SOAP and HTTP are represented by extensibility elements, WSDL can
be used to describe practically any service.

The service element contains one or more port elements. A port element is used to define an
address where a Web service that supports a particular binding can be reached.

Chapter 6: ASPNET

Overview

ASP.NET, the next generation of the Microsoft Active Server Pages (ASP) platform, is
known for the ease with which it allows you to develop Web applications. It provides a layer
of abstraction that lets you focus on solving business problems instead of developing the
underlying plumbing, which can greatly increase your productivity. This model has been
extended beyond Web Forms to include Web services.

ASP.NET is also popular because it offers a rich set of services that you can leverage when
you build applications. With the introduction of ASP.NET, the platform facilitates the rapid
creation and consumption of Web services. ASP.NET abstracts the underlying Web services
protocols such as SOAP, WSDL, and HTTP away from the developer. As | demonstrated in
Chapter 1, Web services that expose simple interfaces require little, if any, knowledge of the
underlying protocols.

Sometimes you need to exercise a high degree of control over the serialization of the SOAP
messages and the format of the WSDL document used to describe the Web service.
Fortunately, ASP.NET provides the necessary hooks that allow you to control practically
every aspect of the implementation of a Web service. In this chapter, | discuss the hooks
ASP.NET provides as well as examples of when to use them.

Web application developers have come to rely on services provided by the ASP platform,
such as state management and security. These services have been significantly improved in
ASP.NET and can be leveraged to create robust Web services. Additional services such as
automatic generation of documentation have also been introduced specifically for Web
services.

For a version 1 product, ASP.NET is a remarkably feature-rich and solid development

platform. However, as with any V1 product, ASP.NET has some quirks. In this chapter, | talk
about many of them and show you how to work through them.

Creating an ASP.NET Web Service

Let's say that an online brokerage firm wants to provide a Web service to its customers. It
could accomplish this by writing an ASP.NET Web application. However, the firm wants to
extend the reach of its services so that they can be leveraged from other applications. For
example, a portal site such as MSN or Yahoo! might want to provide these services but
might lack the expertise or the desire to take on the burden of building the services
themselves.

Instead, the portal site can provide a Ul to the customer and use the brokerage firm's Web
service as the back end. At worst, the portal will retain the customer within its site and
potentially increase its ad revenue. At best, the portal can charge an incremental amount on
top of the fees provided by the brokerage firm. Either way, it is potentially a win-win situation
for the portal company and the brokerage firm.

In this chapter, | build the Securities Web service, which allows the client to perform actions
such as obtaining a quote for a particular stock, bond, or mutual fund. The individual
methods will contain skeleton implementations that let you focus on the mechanics of
building Web services using ASP.NET.

The first thing | need to do is define the endpoint for the Securities Web service. A Web
service is defined by an .asmx file, which serves as the endpoint for the Web service Calls

made to .asmx files are intercepted and processed by the ASP.NET runtime.

The implementation of the Web service is encapsulated within a class. The class definition
can either appear inline within the .asmx file or be contained in a separate dynamic link
library (DLL). The .asmx page needs to contain information that the runtime can use to
locate the class.

Each .asmx page contains a directive at the top of the page that specifies where and in what
form the implementation of the Web service can be found. This directive is used by the

ASP.NET runtime to bind the Web service to a class that contains the implementation.

Here is an example in which the implementation of the Web service is contained within the
.asmx file:

<%@ WebServi ce Language="c#" Cl ass="BrokerageFirm Securities" %

nanespace BrokerageFirm

{
/1 Inline definition of the Securities class
public class Securities
{
| mpl ement ati on. ..
}
}

The Class attribute contains the fully qualified nhame of the class that implements the Web
service. If the code resides within the .asmx file, you must set the Language attribute, which
specifies the language in which the code was written.

The first time the Web service is accessed, the ASP.NET runtime will use the Language
attribute to compile the code with the appropriate compiler. Thus, even if the code
implementing the Web service is contained within the .asmx file, it will always be executed
as compiled machine code.

Out of the box, ASP.NET is configured to dynamically compile code written in C#, Visual

Basic, Visual Basic .NET, and JScript .NET. You can configure additional languages within
the web.config file or the machine.config file. The following is the compilation section of the

machine.config file found in the C:\WINNT\Microsoft. NET\Framework\version\CONFIG
directory:

<l-- conpilation Attributes:
tenpDi rectory="directory"
debug="[true|fal se]"
strict="[true|fal se]"
explicit="[true|fal se]"
batch="[true|fal se]"
bat chTi meout ="ti meout in seconds”
maxBat chSi ze="max nunber of pages per batched conpil ation”
nunReconpi | esBef or eAppRest art =" max nunber of reconpil ations

before appdonmain is cycled"
def aul t Language="name of a | anguage as specified
in a <conpiler/> tag bel ow'

-->

<conpi | ati on debug="fal se" explicit="true" defaultlLanguage="vb">

<conpi l ers>
<conpi | er | anguage="c#; cs; csharp" extension=".cs"
type="M crosoft. CSharp. CShar pCodePr ovi der, System
Ver si on=1. 0. xxxx. 0, Cul ture=neutral
Publ i cKeyToken=1234567890abcdel" />
<conpi | er | anguage="vb; vi sual basi c; vbscri pt" extensi on=".vb"
type="M crosoft. Vi sual Basi c. VBCodePr ovi der, System
Ver si on=1. 0. xxxx. 0, Cul ture=neutral
Publ i cKeyToken=1234567890abcdel" />
<conpi | er | anguage="j s;jscript;javascript" extension=".js"

type="M crosoft.JScript.JScriptCodeProvider, Mcrosoft.JScript"
/>

</ conpil ers>

<assenbl i es>
<add assenbl y="nscorlib"/>
<add assenbl y="System Version=1.0.xxxx.0
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/ >
<add assenbl y="System Web, Version=1.0.xxxx. 0,
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/>
<add assenbl y="System Data, Version=1.0.xxxx. 0,
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/ >
<add assenbl y="System Web. Servi ces, Version=1.0.xxxx. 0,
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/ >
<add assenbl y="System Xm , Version=1.0.xxxx.O0,
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/ >
<add assenbl y="System Drawi ng, Version=1.0.xxxx.O0,
Cul ture=neutral, PublicKeyToken=1234567890abcdel"/ >
<add assenbl y="*"/>

</ assenbl i es>

</ conpi | ati on>

As you can see, the default language is Visual Basic .NET (vb), so my C# example must set
the Language attribute to c#, cs, or csharp.

The compilation section also includes a list of assemblies that are referenced by code within
the .asmx file. If the Securities Web service were to reference entities from an assembly
other than those listed in the preceding code, | could add a new machine-wide reference to
my machine.config file or an application-wide reference to my web.config file.

The last add element specifies a wildcard for the assembly name. If an assembly is
referenced within an .asmx file that was not previously listed, the ASP.NET runtime will
search for the assembly. (See the product documentation for the exact search order.)

The class implementing the Web service can also reside within a compiled assembly. By
convention, the assembly is placed in the Web application’s bin directory because this
directory is always included in the search path of the runtime. This is the default
configuration for Web services created using Visual Studio .NET. The following is the
WebService directive that Visual Studio .NET creates automatically:

<%@ WebServi ce Language="c#" Codebehi nd="Servi cel. asnx. cs"
Cl ass="Br okerageFi rm

. Servicel" %

As is typical in the Visual Studio product line, most of the attributes defined in the
WebService directive are used by the editor and are ignored by the runtime. As | mentioned,
you must specify the Language attribute only if the implementation of the Web service
resides within the .asmx file. In addition, the code-behind file is always ignored by the
ASP.NET runtime and is used by Visual Studio .NET to bring up the appropriate source code
file when you select View Code within the IDE.

One other potential gotcha is that Visual Studio .NET will only partially maintain this file.
When you rename the .asmx file to something more meaningful, Visual Studio .NET will
automatically rename the associated code-behind file and update the WebService directive
accordingly. As a common practice, | also rename the class that implements the Web
service to match the name of the .asmx file.

Unfortunately, Visual Studio .NET will not automatically update the Class attribute. If you
rename the class, you have to manually update this attribute yourself. Furthermore, double-
clicking the .asmx file to update this attribute will display the design surface, not the file text.
Visual Studio .NET does not provide the same buttons shown on an .aspx file’s design
surface that allow you to switch between the design view and the underlying text of the file.
You have to right-click the file, choose Open With, and then select Source Code (Text)
Editor.

Now that | have discussed the two options—placing the implementation for your Web service
within the .asmx file or within its own assembly—I am sure you are wondering which one you
should use. Well, as with most design decisions, it depends. Placing the code within the
.asmx file provides the simplest means of deployment because ASP.NET will compile the
code dynamically for you. However, deploying the implementation within an assembly
ensures that your code will not contain compilation errors. Also, if you are deploying the Web
service outside the confines of your data center, others will not have access to the source
code.

Another potential advantage of having the implementation of your Web service reside within
an assembly is that it can be directly referenced by other applications hosted on the same
machine. For example, suppose | provide an HTML-based Ul that allows my customers
access to the functionality of the Securities Web service. If the class containing the
implementation of the Web service is in its own assembly, the Web application can reference
the assembly and directly access the Web service class. This avoids the unnecessary
overhead of accessing the functionality remotely.

You should take this approach with caution, however. Some Web services rely on services
provided by the ASP.NET runtime to function correctly. For example, a Web method might

set an attribute stating that the ASP.NET runtime must create a new transaction on its
behalf. Because ASP.NET is responsible for ensuring that a transaction is created, no
transaction will be created if the class implementing the Web service is accessed directly.

Regardless of which option you choose, the code for implementing the Web service will be
the same. For starters, | will implement one method within my Securities Web service,
InstantQuote. Plenty of services on the Web give quotes on the price of a company’s stock.
However, these quotes are often time delayed and can be more than 20 minutes old.
InstantQuote will use an extremely complex algorithm to obtain the price a security is trading

at on the floor. Following is the implementation.
usi ng System
usi ng System Web. Servi ces;

nanespace BrokerageFirm

{

public class Securities : WbService

{
[WebMet hod]

publ i ¢ doubl e InstantQuote(string synbol)
{

doubl e price = 0;

swi t ch(symbol)
{
case "MSFT":
price = 197.75;
br eak;

case " SUNW :
price = 2.50;

br eak;
case "ORCL":

price = 2.25;
br eak;

return price;

All right, so the algorithm is not that complex. What do you expect with an example? The
important thing to note is that the implementation of the Web service is a standard public
class declaration with a WebMethod attribute decorating the InstantQuote method. This
class declaration can be either compiled into an assembly or placed as is within the .asmx
file, and it is the same whether it is contained within the .asmx file or compiled into a
separate DLL.

Each method that is intended to be exposed by the Web service must be public and must be
decorated with the WebMethod attribute. This tells the ASP.NET runtime to expose the
method as publicly accessible. From this point on, | will refer to a method of a class
decorated with the WebMethod attribute as a Web method.

When you decorate a method with the WebMethod attribute, you can also set various
properties that modify the behavior of the ASP.NET runtime. Table 61 lists the properties
exposed by the WebMethod attribute.

Table 6-1: Properties of the WebMethod Attribute

Property Description

BufferResponse Specifies whether the response to the client should be buffered.

CacheDuration Specifies the amount of time, in seconds, that a response will be
cached in memory by the Web server for a given response. The
default is 0.

Description Specifies the value of the description element under each

operation element within each type definition within the ASP.NET-
generated WSDL document.

EnableSession Specifies whether the ASP.NET session state services will be
available for the implementation of the method.

MessageName Specifies the name of the method exposed by the Web

service. Specifically, it sets the name of the element within the
body of the SOAP message that contains the parameters as well
as the suffix of the SOAP action. It also specifies the prefix of the
names of the message, input, and output elements within the
ASP.NET-generated WSDL

document.

TransactionOption Specifies the transactional support that should be provided for the
implementation of the method. The method can serve only as the
root of a transaction and cannot participate in the caller’s
transaction.

The ASP.NET page framework also provides the WebService attribute. This attribute is set

at the class level and is used to modify properties of the Web service as a whole. Changes
made via the WebService attribute will be reflected in the Web service’s WSDL document.
Table 62 lists the properties exposed by the WebService attribute.

Table 6-2: Properties of the WebService Attribute

| Property | Description

Description Specifies the description element under the service element within

the ASP.NET-generated WSDL document.

Table 6-2: Properties of the WebService Attribute

Property Description

Name Specifies the name of the service element within the ASP.NET-

generated WSDL document. It also specifies the prefix for the
names of the portType, binding, and port elements.

Namespace Specifies the target namespace for the WSDL document as well
as the schema document that defines the structures for encoding
the parameters within the body of a SOAP message. It also
specifies the prefix of the namespace for the schema that contains
any custom types defined by the Web service and the value of the
SOAP action.

Now that | have defined the Securities Web service, let’s talk about how clients can access
it.

Transport Protocols and Bindings

The Securities Web service can be accessed by the client only over HTTP because HTTP is
the only transport protocol supported by ASP.NET. However, by default the Securities Web

service supports three styles of binding to the HTTP protocol: SOAP, HTTP GET, and HTTP
POST.

All ASP.NET Web services support the SOAP binding. Of the three binding styles, SOAP is
most often preferred because data contained within the messages is strongly typed using

XML Schema. In addition, XML datatypes can be mapped fairly well to .NET datatypes.

Support for the HTTP GET/POST bindings is more limited than for SOAP. Some factors that
limit the ability of the ASP.NET runtime to support the HTTP GET/POST bindings are the
following:

] Required SOAP headers The HTTP GET/POST bindings do not provide a means of
sending and receiving header information. If a Web service’s WSDL document states
that a header must always be included in a message exchanged between the client and
the server, the message must be encoded using SOAP.

] Complex input parameters ASP.NET does not support encoding complex types
encoded within the name/value pair on the query string or in the body of the HTTP
request.

] Multiple parameters returned to the client Only the return parameter can be passed
back to the client. ASP.NET does not support encoding in/out or out parameters within
the message returned to the client as a result of an HTTP GET/POST request.

If the Web service exposes relatively simple interfaces, it can also be exposed via HTTP

GET and HTTP POST. These bindings are simpler than SOAP, so they might make it easier
for developers using less-sophisticated toolsets to interface with the Web service.

For example, it would be relatively straightforward to interface with the Securities Web

service using the XML Document Object Model (DOM). To get the current price for Microsoft
stock, you load the DOM with the results of the Web method call by passing

? = to the load method. The DOM
will be initialized with the following XML returned from the Web service:

<?xm version="1.0" encodi hg="utf-8" ?>
<doubl e xm ns="http://tenpuri.org/">197. 75</ doubl e>

Once the XML DOM has been initialized, you can navigate the DOM to obtain the value of
the double element.

You can easily specify which protocol bindings your Web service will support. ASP.NET
provides a flexible means of configuring Web applications via a hierarchical structure of XML
configuration files. The machine-wide configuration file is located at

C:\WINNT\Microsoft. NET\Framework\version\CONFIG\machine.config. The machine.config
file contains the default configuration for all Web applications on the machine.

A web.config file, which you can optionally create within the root directory of the Web
application, extends or overrides the configuration settings within machine.config. You can

also place a web.config file within a subdirectory of the Web application to extend or override
the configuration settings within the Web application’s web.config file.

By default, the machine.config file is configured to support all three protocols. You can
modify the machine.config or web.config file for the particular application to disable any one
of the three bindings. For example, you can add the following webServices section to your
web.config file to disable HTTP POST and HTTP GET:

<configuration>

<l-- Portions of the configuration file renpved for clarity -->
<system web>
<webServi ces>
<pr ot ocol s>
<renove nane="HttpPost"/>
<renove nane="HttpGet"/>
</ prot ocol s>
</ webSer vi ces>
</ system web>

</confi guration>

The protocols added to the machine.config file by default are HttpSoap, HttpPost, HttpGet,
and Documentation. | discuss Documentation in the next section. Unfortunately, in this
version of ASP.NET the supported protocols are not extensible.

Valid child elements for the protocols element are add, remove, and clear. The add and

remove elements add and remove a particular protocol specified by the name attribute,
respectively. The clear element clears all settings that are inherited from parent configuration

files. For example, the following configuration file ensures that only HttpSoap and
Documentation are supported, regardless of what was set in parent configuration files:

<configuration>

<l-- Portions of the configuration file renoved for clarity -->
<system web>
<webSer vi ces>
<pr ot ocol s>

<clear/>

<add name="Htt pSoap"/ >
<add name="Documnent ati on"/ >
</ prot ocol s>
</ webSer vi ces>

</ system web>

</ confi guration>

First | clear any configuration settings that might have been set by a parent configuration file.
Then | explicitly add HttpSoap and Documentation to the list of protocols supported by the
Web service.

Web Service Documentation

The ASP.NET runtime includes a set of services that provide documentation for your Web
service. The ASP.NET runtime uses reflection to generate two types of documentation:

human-readable documentation, and documentation used by client applications to interact
with the Web service.

You can reach HTML-based documentation by entering the URL of the Web service into a

Web browser. Both the WebService and WebMethod attributes expose a Description
property. The following example is a modified version of the Securities Web service | created
earlier:

usi ng System
usi ng System Web. Servi ces;

nanespace BrokerageFirm

{
[WebSer vi ce(Description="This Wb service provi des services
related to securities.")]

public class Securities : WbService
{
[WebMet hod(Description="Used to obtain a real-time quote
for a given security.")]
publ i c doubl e InstantQuote(string synbol)
{

doubl e price = 0;

swi t ch(synbol)
{
case "MSFT":
price = 197.75;

br eak;

case " SUNW :
price = 2.50;

br eak;

case "ORCL":
price = 2.25;
br eak;

return price;

}

The HTML-based documentation that is automatically generated for
service is shown here:

That WS AArvans ErovRHEE IRrVIH PR 1 Re A

This weel versice v wing bEp: / ftemperiang/ o ity defasll nameupace,
HiDarmine el stk e Change the defaull namecpace befare The virh versice 15 made pebfic.

Each wl torvicn needs 4 urepen Aaripece S devily # so thet dient sachistnon cen dabngunh £ieom dibar peresen o the
mul PR Arregn s m ogeniabie for maly prtesies Bl aep hdes Sesekpeeend, e [ubbefed mel aroses theadd uie 8 wen

rareapacs that pow ontrol. Far uangie. raa oould wia soer comoany s Infemret
Fei ey wek SerRTE oy LBy, Py raneed ropt poard B 4 b
e e g

Frc i bk CPunsgad wisteg i et breicn striens’s Mamifacs agary . The
s sl Shat contnna Hhe ek serson mathosds. Bakve it 8 code usmoh Bt et

| WetSarwice [Hamaspaces"Lotpr/ /ELcr oactt | com vekarrvicens]
suhiliz cluss EyfskSscvics |

S ——

||_|nn .ﬁ Locd et

the Securities Web

e e S
e i pes Ppats [wh S -
Foad - = QG Q) [Ereenalte Qiieech e 3 05 4B

e T T e S —— =] e "
Securities

£l

The Web page lists the method exposed by the Web service, InstantQuote. The Web page

also provides a recommendation to set the default nramespace of the Web service and
provides code examples for C# and Visual Basic .NET. | cover how to set the default

namespace later in the chapter.

If you click on a particular method, you see documentation for that particular method, as

shown here:

5ot s e hevrr S et e .

i i e Fgpeaesm [wh S
e o R I i T B T L T R P e I I
Sediirwes) Fnup Vow bt rmer gt em A e b gLt o 2] e e ™

Securities '

Ehck Snr § cessbety Bl oF Do reT

IrnstantQuate

Liad in obten 8 realiesd Dorts for @ Qe A8t

Taui

o oy b Tek 1 il Pl

Fggemuip 'Yana

Ll

SOKE
Thn Frlgmrsy o @ 1araphs TOAF radpadd wed reparen The placsholdiry tFome rded i B replioed w5 scbeel @ ghm
T AN eyl | PR R i e, asms HTTF U4
[SETN R Ty

Comlepd-Typel VTEnlfamli ki Pet=wil-8
CORCERE-LakJik]l Lengik
FOAFAITIGE] SEOULpE S CaEET] . g TR R R

#] =z {F Locd nherei

The documentation for the InstantQuote method shows the parameter that is expected to be
passed. The text set by the WebMethod attribute’s Description property is also displayed.
The Web page also provides an example template for how the parameters should be
encoded within SOAP, HTTP GET, and HTTP POST messages.

If the parameters are simple, as in the case of the InstantQuote method, the generated
documentation for the method also includes a test harness for posting data via HTTP GET to
the Web service. This simple test harness can come in handy for testing the logic within the
Web service. It also serves as the default client when you debug your Web service in Visual
Studio .NET.

The documentation automatically generated by ASP.NET serves as a good starting point.
However, you should consider expanding it to include more descriptive information about the
Web service. You should also consider showing a few examples, including the contents of
the request and response messages—especially for Web services that will be publicly
exposed via the Internet.

You can configure ASP.NET to display your custom documentation when a user navigates
to the .asmx file by setting the wsdlHelpGenerator element within the configuration file. The

HTML documentation for the Securities Web service displayed in the preceding graphic is
generated by DefaultWsdIHelpGenerator.aspx, which is located in the
C\WINNT\Microsoft. NET\Framework\versionN\CONFIG directory. The entry within the
machine.config file for the default HTML documentation is as follows:

<configuration>

<l-- Portions of the configuration file renoved for clarity -->
<system web>
<webServi ces>
<wsdl Hel pGener at or href =" Def aul t WsdIl Hel pGener at or. aspx" />

</ webServi ces>

140

</ system web>

</ confi guration>

Despite the wsdl prefix, the wsdIHelpGenerator element is used to set the file that will

display the HTML-based documentation, not the WSDL documentation. The href attribute
specifies the name of the file that will be used to display the documentation. If the filename is
fully qualified, it should contain the file path to the document, not the document’s URL.

The ASP.NET runtime also generates documentation about a Web service in a format that
can be programmatically consumed by clients. The ASP.NET runtime automatically
generates a WSDL document that describes the Web service. You can access this by
passing the value wsdl to the .asmx file within the query string. The following is a portion of
the WSDL generated for the Securities Web service:

W il =
T - [= |
| o 3 A Crewais ieec gfesss 3 0 00 S o] B

e T T L ey) i LR

Bt/ M ampur o Teltpsff sehmmas smlsnap . ongd vl
o "yl i [bR

wn kDS Flerrgeerd o
Tevstlant Quote”

"1 "1 Fuyemibod Trum”®

‘s owteing'

Tkl ol L] i s S gmbrirk i

1 ="1" “Iratand Guol eFa-hul
typen 'wodoubile’

] Lo O Lol b

The WSDL document describes the Web service and can be used by the ASP.NET platform
to create proxies for calling Web methods. | discuss how to create and use Web service
proxies in the section titled ‘Using the WSDL Utility to Generate Proxy Code” later in this
chapter. | discussed WSDL in more detail back in Chapter 5.

The autogeneration of both the HTML and the WSDL documentation is enabled by default
within the machine.config file. You can disable autogeneration of documentation for the
entire machine by modifying the machine.config file, or you can disable it for an individual
Web directory by modifying the web.config file. The following example disables the
documentation support:

<configuration>

<l-- Portions of the configuration file renoved for clarity -->
<system web>
<webServi ces>
<pr ot ocol s>
<renpve name="Documentation"/>
</ prot ocol s>
</ webServi ces>

141

</ system web>

</ confi guration>

Unfortunately, there is no way to disable the HTML and WSDL documentation separately.

Raising Errors

Recall that the InstantQuote Web method exposed by the Securities Web service returns the
price of a particular security. However, there is one problem with its current implementation.
If the Web method does not recognize a symbol, a price of zero will be returned to the client.
This is obviously a problem, especially because the current implementation supports only

three symbols. To avoid striking panic in the hearts of investors, we need a way to raise an
error stating that an invalid symbol was passed.

An error of type SoapException can be thrown when an error is encountered within the

Securities Web service. If a SoapException error is thrown by a Web method, the ASP.NET
runtime will serialize the information into a SOAP Fault message that will be sent back to the

client.

As you learned in Chapter 3, a well-formed Fault element must contain at least two child
elements, faultstring and faultcode. The constructor for the SoapException class takes a
minimum of two parameters to set the value of these elements. Once an instance of the
SoapException object has been created, the values can be accessed by the Message and

Code properties.

The Code property is of type XmlQualifiedName. For convenience, the SoapException class
defines static fields for each of the base fault codes defined by the SOAP specification. The
following extended version of the Securities Web service throws an exception resulting from
an error on the server:

usi ng System
usi ng System Web. Servi ces;
usi ng System Web. Servi ces. Prot ocol s;

nanespace BrokerageFirm

{
[WebServi ce(Description="This Wb service provi des services
related to securities.")]
public class Securities : WbService

{
[WebMet hod(Description="Used to obtain a real-tine quote
for a given security.")]
publ i c doubl e InstantQuote(string synbol)

{

doubl e price = 0;

swi t ch(synbol . ToUpper ())
{

142

case " MSFT":
price = 197.75;

br eak;

case " SUNW :
price = 2.50;
br eak;

case "ORCL":
price = 2.25;
br eak;
defaul t:
throw new SoapException("lnvalid synbol.",
SoapException. Cient Faul t Code) ;

return price;

}

As | explained in Chapter 3, you can define more-specific fault codes. These developer-
defined codes can be appended to the base fault code delimited by a period. The following
throws an exception that contains a more-specific fault code:

Xm Qual i fi edName i nval i dSynbol sFaul t Code =
new Xml Qual i fi edName("Client.|nvalidSynbol ",
"http://schemas. xm soap. or g/ soap/ envel ope/");
t hrow new SoapException("lnvalid synbol.", invalidSynbol sFaul t Code);

Recall that additional elements can also appear within the Fault element. The
SoapException class exposes a nhumber of read-only properties to access this information.
Because the properties are read-only, the SoapException class has numerous overloaded
constructors that enable the properties to be set. Table 63 lists the properties that can be

set via an overloaded constructor.
Table 6-3: Properties of the SoapException Class

| Property | Description

| Actor | Specifies the value of the faultactor element

| Code | Specifies the value of the faultcode element

| Detail | Specifies the contents of the faultdetail element
| Message | Specifies the value of the faultstring element

| InnerException | Specifies the value of the inner exception

143

Table 6-3: Properties of the SoapException Class

‘ Property | Description

Used to access any other child elements that might be present

OtherElements
within the Fault element

Both the Detail and the OtherElements properties can contain an arbitrary hierarchy of data.
The Detail property is of type XmINode and can contain more-detailed information about the
Fault element. The OtherElements property contains an array of type XmINode and is used
to contain other child elements that might reside within the Fault elements.

If an exception is thrown by the Web method that is not of type SoapException, the
ASP.NET runtime will serialize it into the body of the SOAP Fault element. The faultcode
element will be set to Server, and the faultstring element will be set to the output of the
ToString method of the exception object. The output usually contains the call stack and other
information that would be useful for the Web service developer but not the client. Therefore,
ensuring that a client-friendly SoapException class will be thrown from the Web method is
recommended.

SOAP Encoding Styles

I mentioned in Chapter 5 that the WSDL SOAP extensibility elements define two different
encoding styles, Document and RPC. The RPC style of encoding formats the message as
described in the section titled “SOAP Encoding” in Chapter 3 and is intended to support
procedure-oriented interaction between the client and the server. The Document style of
encoding is intended to support document-oriented messages that will be exchanged

between the client and the server. See the section titled “Extensibility Elements” in Chapter 4

for more information.

The encoding style affects the format in which the Web service expects SOAP requests to
be encoded by the client and how the response received from the Web service will be
encoded. ASP.NET Web services have overwhelmingly been showcased as an easy way to
facilitate procedure-based communication between the client and the server. But ironically,
Document is the default encoding style.

Recall that the default encoding style is set in the WSDL document via the style attribute of
the binding extensibility element. You can set the default encoding style value by decorating
the class with the SoapDocumentService or SoapRpcService element. Because the
InstantQuote Web method is intended to support procedure-oriented communication
between the client and the server, the following example uses the SoapRpcService attribute
to set the style to RPC:

usi ng System
usi ng System Web. Servi ces;
usi ng System Web. Servi ces. Prot ocol s;

nanespace BrokerageFirm

{

[WebSer vi ce(Description="This Wb service provi des services
related to securities.")]
[SoapRpcSer vi ce]

144

public class Securities : WbService
{
[WebMet hod(Descri ption="Used to obtain a real-tinme quote
for a given security.")]
public doubl e InstantQuote(string synbol)
{

doubl e price = 0;
/1 1nplementation...

return price;

}

All methods defined by the Securities class, including InstantQuote, will default to RPC-style
encoding. You can override this default by decorating a method with the
SoapDocumentMethod attribute. On the other hand, if you want to formally state that the
default is Document, you can do so using the SoapDocumentService attribute.

The SoapDocumentService attribute exposes three properties that you can set to control
how the SOAP documents are formatted. Of the three, the SoapRpcService attribute
supports only the RoutingStyle property. Table 6-4 describes these properties.

Table 6-4: Properties of the SoapDocumentService Attribute

Property Description

ParameterStyle Specifies whether the parameters are wrapped in a single element
within the body of the SOAP message

RoutingStyle Specifies whether the HTTP SOAPAction header should be
populated or left blank

Use Specifies whether the default for the encoding style of the
messages is Literal or Encoded

Recall from Chapter 4 that the SOAP extension elements also allow you to specify whether
the individual messages within an operation are literal or encoded. Literal means that the
message must be formatted exactly as dictated by the schema. Encoded means that the
message can be encoded as specified. For RPC-style documents, the use attribute is

always set to Encoded.

The WSDL SOAP extension elements do not provide a means of specifying a default for the
use attribute. Conveniently, the SoapDocumentService attribute does so via the Use
property. The ASP.NET runtime will propagate the value of this property to every WSDL
message definition. The Use property can be set to one of three values defined in the
SoapBindingUse enumeration: Literal, Encoded, or Default. The default is Literal.

The value of the use attribute for RPC-style documents is encoded. The SoapRpcService
attribute does not expose a Use property, so the value cannot be changed.

145

In Chapter 3 | also mentioned that the SOAPAction HTTP header can be empty if the intent
of the SOAP message is conveyed in the HTTP request header entry. As you will see in
Chapter 9, Universal Description, Discovery, and Integration (UDDI) messages require the
HTTPAction header to be empty because each action is posted to a unique URL that
conveys the intent of the request.

You can specify whether the SOAPAction header should be populated by setting the
RoutingStyle parameter of the SoapDocumentService or SoapRpcService attribute. The
RoutingStyle parameter is of type SoapServiceRoutingStyle and can be set to SoapAction or
RequestElement. The default is SoapAction.

You can also use the SoapDocumentService attribute to indicate how parameters should be
encoded within the body of the message. The ParameterStyle property can be set to one of
three values defined in the SoapParameterStyle enumeration: Bare, Wrapped, or Default.

Wrapped means that the parameters will be wrapped within a parent element. The parent
element will have the same name as the Web method. Bare means that the parameter
elements will appear as direct children of the SOAP body element. The default is Wrapped.
Because RPC-style documents follow the encoding style specified by Section 7 of the SOAP
specification, parameters are always wrapped.

The SoapDocumentMethod and the SoapRpcMethod attributes are associated with a
particular Web method and can be used to override the defaults set by their Web service
counterparts. You can also use them to further define how messages sent and received by a
Web method should be encoded. Table 6-5 lists the properties exposed by the
SoapDocumentMethod attribute. The SoapRpcMethod attribute supports the same set of
properties minus the ParameterStyle and Use properties.

Table 6-5: Properties of the SoapDocumentMethod Attribute

| Property | Description

|Action | Specifies the URI placed in the HTTP SOAPAction header

Binding Associates a Web method with a particular binding
specified by the WebServiceBinding attribute

OneWay Specifies whether the client will receive a response in
association with the request

ParameterStyle Specifies whether the parameters are wrapped in a single
element within the body of the SOAP message

RequestElementName Specifies the name of the request element within the body
of the SOAP message

RequestNamespace Specifies the namespace URI that contains request element
definition

ResponseElementName Specifies the name of the response element within the body

of the SOAP message

ResponseNamespace Specifies the namespace URI that contains response
element definition

Use Specifies whether the encoding style of the messages is
Literal or Encoded

ASP.NET supports two of the four message exchange patterns defined by WSDL, request-
response and one-way. So far in this chapter, the examples have all been based on the

146

default message pattern, request-response. Both the SoapDocumentMethod and the
SoapRpcMethod attributes expose the OneWay property. When set to true, this property

states that no response will be returned to the client when that particular Web method is
invoked.

The SoapDocumentMethod and the SoapRpcMethod attributes also allow you to specify the
name of the element used to wrap the parameters within the request and response
messages. You can set the ResponseElementName and RequestElementName properties
to the name assigned to their respective elements.

You can also set the namespace in which the datatype of the request or response element is
defined by setting the RequestNamespace or ResponseNamespace property. If this property
is not set, the namespace defaults to /encodedTypes relative to the Web service’s
namespace.

If the ParameterStyle property is set to Wrapped, the properties used to set the element
name and the namespace of the response and request messages will be ignored.

Encoding References

When you pass parameters to a remote service, you need to take into account whether the
identity of the parameters will be maintained. In some cases, maintaining the identity of the
parameters is extremely important. Consider the following Web service, which registers rock
climbers for a competition:

public struct Person

{
public string Nane;
public int Age;

public class Cinbi ngConpetition

{
[WebMet hod]
public void Register(Person contestant, Person bel ay)
{
/'l 1nplenmentation...
}
}

The contestant is the individual who will be climbing. The climber will be attached to a rope

in case she falls. The belay is the individual who will be holding the other end of the rope on
behalf of the climber. With that information in mind, consider the following example:

Cl i mbi ngConpetition competition = new Clinbi ngConpetition();
Person clinber = new Person();

conpetition. Register(clinber, clinber);

147

The preceding code contains an error: it registers a climber as both the contestant and the
belay. Needless to say, the climber better be darn sure she is not going to fall! Unfortunately,
the Register method has no way to capture this runtime error because structures are, by
default, passed by value. Therefore, two independent copies of climber will be passed to the
Register Web method.

I am fairly certain that the sponsors of the competition would want to ensure that every
climber is being belayed. However, unless identity is maintained, the Register method will
have no idea whether the contestant and the belay are one and the same. | will explain two
potential ways of solving this problem.

The first way is to pass a unique identifier with each of the entities. For example, in addition
to passing the person’s name and age, you might also want to pass the person’s driver’s
license number (assuming that the driver’s license number is guaranteed to be unique). The
implementation of the Register method could then check to ensure that the license number
of the contestant does not match the license number of the belay.

The second way to solve this problem is to pass the instance of the Person structure by
reference. In Chapter 3 you learned how SOAP Encoding specifies the use of the href and id

attributes to maintain the identity of a parameter passed by reference. ASP.NET leverages
this mechanism to maintain the identities of instances of structures that are passed by
reference. Let's take a look at a modified version of the Register method:

public struct Person

{
public string Nane;
public int Age;

public class Cinbi ngConpetition

{
[WebMet hod]
[SoapRpcMet hod]
public void Register(ref Person contestant, ref Person bel ay)
{
/1 Verify that the contestant and the bel ay
/1l are not the sane person.
i f(Obj ect. ReferenceEqual s(contestant, bel ay))
{
t hrow new SoapExcepti on(
"The contestant and the belay cannot be the sane
person. ",
SoapException. d i ent Faul t Code) ;
}

/1 1nplementation...

148

}

In the preceding example, the Register Web method is decorated with the SoapRpcMethod
attribute. This instructs the ASP.NET runtime to serialize the parameters using SOAP
Encoding as specified in Section 5 of the SOAP 1.1 specification. In addition, each
parameter is decorated with the ref keyword, which indicates that the parameter will be
passed by reference. This instructs the ASP.NET runtime to maintain the identity of the
instance of the structure passed to the Register method. Note that ASP.NET will maintain
identity only for Web methods decorated with the SoapRpcMethod attribute or contained
within a class decorated with the SoapRpcService attribute.

Unfortunately, ASP.NET is somewhat inconsistent when handling parameters passed by
reference. There is one case in which ASP.NET will not maintain the identity of parameters
passed by reference. There is another case in which the identity is maintained, but
modifications to the parameters passed by reference are not passed back to the caller. Let's
examine each of these situations separately.

With the first issue, the ASP.NET runtime does not properly maintain the identity of
parameters when core value types such as Int32 and String are passed by reference.
Consider the following example:

public class Issues

{
[WebMet hod]
[SoapRpcMet hod]
public void Issuel(ref int x, ref int y)
{
X += 10;
y += 30;
}
}

Since both xand y are decorated with the ref keyword, their values will be round-tripped to
the caller. Therefore, any modifications made to the values of xand y by the Issuel Web
method will be reflected on the client. However, because the identities of the parameters are
not maintained, your application could be left in an inconsistent state. Consider the following
client code:

| ssues issues = new |ssues();
int z = 10;
i ssues. | ssuel(ref z, ref z);

This code leverages a proxy class generated by the ASP.NET WSDL.exe command line
utility and generates the following SOAP request message:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns:tns="http://tenpuri.org/"

xm ns:types="http://tenpuri.org/ encodedTypes"

xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

149

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<soap: Body
soap: encodi ngStyl e="http://schemas. xn soap. or g/ soap/ encodi ng/ " >
<tns:|ssuel>
<X Xxsi:type="xsd:int">10</x>
<y xsi:type="xsd:int">10</y>
</tns:|ssuel>
</ soap: Body>
</ soap: Envel ope>

Notice that two distinct copies of the value of z were encoded into the request message.
Unfortunately, the Issuel Web method has no way of knowing that the parameters x and y
actually point to the same variable z on the client and therefore will act on x and y
independently. If identity was maintained, z would equal 50 as a result of calling Issuel.
However, because identity wasn’t maintained, x is set equal to 20 and y is set equal to 40,
as shown in the resulting SOAP response message:

<?xm version="1.0" encodi ng="utf-8"7?>

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: soapenc="http://schemas. xnm soap. or g/ soap/ encodi ng/ "
xm ns:tns="http://tenpuri.org/"
xm ns:types="http://tenpuri.org/encodedTypes"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schem" >
<soap: Body
soap: encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ " >
<tns:|ssuelResponse>
<X XsSi:type="xsd:int">20</x>
<y Xxsi:type="xsd:int">40</y>
</tns:|ssuelResponse>
</ soap: Body>
</ soap: Envel ope>
The ASP.NET-generated proxy will first set z equal to 20 and then set z equal to 40.
Therefore the final state of z will be 40 instead of the correct value of 50. One potential—

albeit clumsy—workaround is to wrap the common value type within a structure. The
following example demonstrates this technique:

public class |Issues

{

public struct Paraneter

{

public int Val ue;

[WebMet hod]
[SoapRpcMet hod]

public void Issuel(ref Parameter x, ref Paraneter vy)

{

Xx. Val ue += 10;
y. Val ue += 30;

}

Unlike core value types, the ASP.NET runtime will maintain the identity of an instance of a
structure that is passed by reference. Unfortunately the ASP.NET runtime will also maintain
the identity of an instance of a structure that is passed by value. Therefore, the preceding
example will exhibit the same behavior even if the ref keyword is specified. If you do not
want the identities of the parameters to be maintained, you can decorate the Web method
with the SoapDocumentMethod parameter instead of the SoapRpcMethod parameter.

The final issue is that the ASP.NET runtime will serialize .NET reference types in only the
SOAP request message and not the response message. By default, reference types are
passed by reference to a method. To achieve this behavior, the client must receive the state
of the reference type after the message has returned. However, because the ASP.NET
runtime will not serialize parameters containing instances of reference types in the return
SOAP response message, the client does not have sufficient information to update its
variables accordingly.

If you want parameters containing instances of reference types to be passed by reference,
you need to decorate the parameter with the ref keyword. Parameters containing instances
of reference types that are decorated with the ref keyword will be serialized in both the
SOAP request message and the response message.

Granted, it is helpful to have a means by which to pass data contained in reference types
one way across the wire in an effort to reduce the amount of data sent. However, this should
be accomplished without overloading the meaning of existing keywords. The meanings of
keywords should remain the same whether the code is executed locally or remotely. The
companion CD contains sample code for the three issues | describe in this section.

Interface Inheritance

As | mentioned at the beginning of the chapter, the Securities Web service is intended to be
consumed by portals such as MSN and Yahoo! Come to find out that other brokerage
companies have approached MSN as well. In an effort to accommodate the numerous
requests, MSN has defined a standard interface in which it will communicate with the various
online brokerage firms.

Interface-based programming has been popularized by technologies such as COM, CORBA,
and Java. Within the .NET platform, interfaces continue to play an important role. They
facilitate treating different objects in a polymorphic fashion without the overhead and
complexity of implementation inheritance.

An interface defines a contract by which classes that inherit a particular interface must
support all the methods defined by the interface. Code that can interact with a particular
interface can consume any object that exposes that interface. For example, the IClonable
interface can be exposed by an object that knows how to clone itself. Code written against
the IClonable interface will be able to clone any object that exposes the interface.

151

In the case of MSN, it would not be ideal to write custom client code to interface with every
single securities-related Web service. Instead, MSN can define a standard interface that all

the securities -related Web services must comply with.

The first task for MSN is to create an abstract interface for the Securities Web service. As
you learned in the previous chapter, a Web service interface is defined within a WSDL
document. A transport-specific interface definition is represented by a binding definition,
while a transport-agnostic interface definition is represented by a port type definition.

The easiest way to generate a WSDL document that describes the interface is to have
ASP.NET automatically generate the WSDL for you. The following example creates a Web

service that defines an abstract class:
<%@ WebServi ce Language="c#" Cl ass="MSN. Securities" %

usi ng System
usi ng System Web. Servi ces;

usi ng System Web. Servi ces. Prot ocol s;

nanmespace MSN

{
[WebSer vi ce(Nanmespace="http://msn. com Securities")]
[SoapRpcSer vi ce]
public abstract class Securities : WbService
{
[WebMet hod]
public abstract double I|nstantQuote(string synbol);
}
}

The preceding code defines an interface for the Securities Web service. Unfortunately, the
abstract keyword is not recognized by the ASP.NET platform, so the code will define a full
WSDL document, not just the interfaces.

One way to overcome this problem is to save the WSDL that is generated by the ASP.NET
runtime with its service definitions removed. Without the service definitions, a client will have
no way of locating the endpoints, which makes the interface definitions abstract. Here is the
WSDL document with its service definitions removed:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions xm ns:s="http://ww.w3. org/ 2001/ XM_Scherma"
xm ns: http="http://schemas. xm soap. org/wsdl / http/"

xm ns: m me="http://schemas. xm soap. org/ wsdl / mi e/ "

xm ns:tnmE"http://mcrosoft.com wsdl/nm ne/textMatching/"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns:tns="http://msn.conf Securities"

tar get Namespace="http://nmen. com Securities"”

xm ns="http://schemas. xm soap. org/ wsdl /">
<types />
<message name="|nstant Quot eSoapl n" >
<part nane="synbol" type="s:string" />
<part nane="count" type="s:int" />
</ message>
<message nanme="1nstant Quot eSoapCQut " >
<part name="Instant QuoteResult" type="s:double" />
</ message>
<port Type name="SecuritiesSoap" >
<operation name="I|nst ant Quote" >
<i nput message="tns: | nstant Quot eSoapln" />
<out put nessage="tns: | nstant Quot eSoapQut" />
</ operation>
</ port Type>
<bi ndi ng nanme="SecuritiesSoap" type="tns: SecuritiesSoap">
<soap: bi ndi ng
transport="http://schemas. xml soap. or g/ soap/ http" style="rpc" />
<operation name="I|nst ant Quote" >
<soap: operation

soapAction="http://msn.com Securities/Instant Quote"
style="rpc" />

<i nput >

<soap: body use="encoded"
nanespace="http://msn. com Securities"

encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/" />
</i nput >
<out put >

<soap: body use="encoded"
nanespace="http://nsn. com Securities"

encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/" />
</ out put >
</ operation>
</ bi ndi ng>

</ definitions>

In addition to removing the service definitions, | also remove any definitions not directly
related to the SOAP binding. | will readdress this issue in a moment when | discuss some of
the limitations of the ASP.NET support for interface inheritance.

A Web service can inherit an interface by referencing a port type or a binding that is defined
by another Web service. ASP.NET does not provide a mechanism for providing protocol-
agnostic interface inheritance. For example, you cannot inherit an interface from a Web
service that is exposed only via SMTP. To do this, you would have to hand-roll the WSDL

used to describe the service so that it references the port type defined within another
namespace. You would also need to disable the WSDL document that is automatically

generated by ASP.NET. (See the “Web Service Documentation” section earlier in the
chapter.)

ASP.NET does provide a mechanism for facilitating transport-specific interface inheritance.
You use the WebServiceBinding attribute to reference a binding defined within another
namespace. You use the Binding property of the SoapDocumentMethod or SoapRpcMethod
attribute to reference the binding definition referenced by the WebServiceBinding attribute.

Next | modify the definition of the Securities Web service to inherit the interface defined

within the MSN namespace. | do so by referencing the SecuritiesSoap binding definition.
Suppose the preceding WSDL document is located at http://msn.com/Securities.wsdl. The

following code defines the Securities Web service provided by www.woodgrovebank.com:
usi ng System
usi ng System Web. Servi ces;

usi ng System Web. Servi ces. Prot ocol s;

nanespace BrokerageFirm

{
[SoapRpcServi ce]

[WebSer vi ceBi ndi ng(" SecuritiesSoap",

"http://msn.com Securities", "http://msn.com Securities.wsdl")]
public class Securities : WbService

{

I reference the SecuritiesSoap binding definition using the WebServiceBinding attribute. The

three parameters | pass to the attribute’s constructor are the name of the referenced binding
definition, the namespace containing the definition, and the location of the WSDL document

containing the definition.

If the binding definition is referenced within the Web method, the ASP.NET runtime will add
a reference to the WSDL namespace that contains the binding. The ASP.NET runtime will
also add an import element to the autogenerated WSDL document. Finally, the ASP.NET
runtime will add a port within the service definition that is associated with the referenced
binding definition, as shown here:

[WebMet hod]

[SoapRpcMet hod(Bi ndi ng="Securiti esSoap")]
public doubl e InstantQuote(string synbol)

{
doubl e price = 0;
/1 1nplenmentation...
return price;

}

}

| use the Binding property of SoapRpcMethod to associate the Web method with the binding
definition. The value of the binding property must match the name assigned to a

Web ServiceBinding attribute defined at the class level; otherwise, a run-time exception will
occur.

Using the WebServiceBinding attribute to facilitate interface inheritance has some
limitations. First, you can reference only SOAP binding definitions. There is also no tool
support for referencing external binding definitions. Developers must take it upon themselves
to create Web methods that match the referenced binding definition. Finally, there is no

validation either at compile time or at run time to ensure that the Web service implements all
the methods exposed by the inherited interface.

To ensure that the Web service supports all the methods of the inherited interface, you can

use the WSDL.exe tool to generate an abstract class representing the Web service. You can
then add the resulting code to your project and derive from the abstract class instead of the

WebService class. The following example creates the BaseSecurities.cs file that contains an
abstract class definition for the base Web service:

wsdl /server /out:BaseSecurities.cs http://msn.conm Securities.wsdl

Once BaseSecurities.cs has been created and added to my project, | can derive the Web
service as follows:

usi ng System
usi ng System Web. Servi ces;
usi ng System Web. Servi ces. Prot ocol s;

nanespace BrokerageFirm

{

[WebSer vi ce(Description="This Wb service provi des services
related to

securities.")]
[SoapRpcSer vi ce]

[WebSer vi ceBi ndi ng(" SecuritiesSoap",
"http://nmsn.com Securities",

"http://men.com Securities.wsdl")]
public class Securities : MSN. Securities

{

/1 1nplenmentation...

}

If the Securities class does not implement all the abstract methods defined within the
MSN.Securities class, | will receive a compiler error.

Managing State

HTTP is by nature a staeless protocol. Even with the introduction of the connection keep-
alive protocol in HTTP 1.1, you cannot assume that all requests from a given client will be
sent over a single connection. If the Web application needs to maintain state on behalf of the
user, you often have to roll your own solutions.

Furthermore, state is usually scoped to the application. Application configuration parameters
such as database connection strings are an example. Defining a Web application and
providing a mechanism to store state that is scoped to the application is an implementation
detail of the Web development platform.

The ASP development platform defines a Web application and provides a service for
maintaining both session and application state. However, the ASP state management
services have some serious limitations. ASP.NET provides a much-improved state
management service. The service can be leveraged by Web Forms as well as Web services.

Session State

It is considered good practice to avoid having to maintain state between requests, when
practical. For that reason, session state is disabled by default. You have to explicitly enable
it for a particular Web method.

Maintaining state on behalf of a user involves associating multiple HTTP requests with one
user session. ASP.NET uses a unique identifier that is passed by the client to identify the
session. This identifier can be saved in a cookie maintained by the client or embedded within
the URL of the request. Even though Web Forms supports both, Web services support only
cookies.

If the proxy used by the client to access the Web service supports cookies, the session ID
will automatically be sent with every request. ASP.NET uses a transient cookie to store the
session ID. By definition, the cookie is intended to be maintained only for the life of the proxy
used to access the Web service.

Because cookies are HTTP-specific, the session state mechanism is bound to the HTTP
protocol. A transport protocol—agnostic way of passing the session ID would be to place the
session ID within the header of the SOAP message. But this is not supported by ASP.NET,
so you would have to roll your own state management system to support this scenario.

Once the session is identified, you need a repository to store the data associated with the
session. The following three scenarios are supported, each with its advantages and
disadvantages:

" In Process This is the fastest scenario because calls to read/write session state will
be handled in process. However, this is also the least robust configuration. If the
ASP.NET worker process (aspnet_wp.exe) is terminated for any reason, all session
state being maintained for the application will be lost. This configuration is ideal for Web
services hosted on a single machine that need the most performant way of accessing
state.

= Out of Process In this configuration, session state is maintained in a separate
process that can even reside on another machine. One advantage of this configuration
is that if the ASP.NET worker process is terminated, the session state for the application
will still be preserved. Because session state is maintained in memory, if the session
state server (aspnet_state.exe) is terminated, all session state will be lost. Another
advantage of this configuration is that state can be shared across multiple Web servers.
All Web servers within the Web farm can be configured to point to the same state
management process. This configuration is ideal for Web services hosted in a Web farm
where the loss of state information should be avoided but is not critical.

] SQL Server This is the most robust and scalable of the three configurations. Session
state is maintained within a SQL Server database. The session state service maintains
a set of tables in which the session state data is serialized into a binary blob. This is the
ideal configuration for Web services hosted in a Web farm if you can afford to purchase
and maintain SQL Server. This configuration is mandatory if you need to ensure that
session state is never lost.

Of the three configurations, In Process is the only one available via the .NET Framework.
You must purchase either the Professional or Enterprise Edition of ASP.NET to obtain the
Out of Process and SQL Server configuration options.

To use the ASP.NET session state service, you must add the module named
SessionStateModule to the application. The default machine-wide configuration file
(C:\WINNT\Microsoft. NET\Framework\version\CONFIG\machine.config) adds this module.

Once you add SessionStateModule, you can configure the session state service within the
sessionState element of the machine.config or web.config configuration file. Table 66 lists
the attributes that you can set within the sessionState element.

Table 6-6: Attributes of the sessionState Element

Attribute Description

mode Specifies where ASP.NET will save session state. The
possible values are

OffSession state is disabled.

InProc Session state is stored within the ASP.NET worker
process.

StateServerSession state is stored by the out-of-process
session state server.

SqlServerSession state is stored within SQL Server.

The default is InProc.

cookieless Specifies whether cookieless sessions should be enabled. The
default is false.

timeout Specifies the number of minutes the session can be

idle before the session is abandoned. The default is 20
minutes.

stateConnectionString Specifies the location of the session state server. The default
value is tcpip=127.0.0.1:42424.

sqlConnectionString Specifies the location of the SQL server. The default value is
data source=127.0.0.1;user id=sa;password=.

Once you have the session state service properly configured, session state is enabled on a
per-Web-method basis. You can enable session state for a particular Web method by setting
the EnableSession property of the WebMethod attribute to true.

Regardless of which configuration you choose, the API for reading/writing session state is
exactly the same. The class that contains the Web method should inherit from the
WebService class. The WebService class exposes the Session property, which returns an
instance of the HttpSessionState class, otherwise known as the session object.

The session object is used to maintain a collection of information related to the user’s
session. Items can be added to and retrieved from the collection via an int or string indexer.

The following example expands the Securities Web service to use session state. The
SetCurrency Web method allows the client to select a particular currency. Future calls to
Instant Quote will return the price of the security using the selected currency.

usi ng System
usi ng System Web. Servi ces;

nanespace BrokerageFirm

{
[SoapRpcServi ce]

public class Securities : WhbService

{
public Securities()
{
/1l Set the default value of the target currency.
if(this.Session["TargetCurrency"] == null)
{

this. Sessi on[" Target Currency"] =
CurrencyType. US_DOLLAR;

}

public enum CurrencyType

{
US_DOLLAR,
UK_POUND,
GE_DEUTSCHVARK
}

[WebMet hod(true)]

public void SetCurrency(CurrencyType targetCurrency)
{

this. Session["Target Currency"] = targetCurrency;

[WebMet hod(true)]

publ i c doubl e InstantQuote(string synbol)
{

/1 1nplenmentation...

return Convert(price,

(CurrencyType)this. Session["Target Currency"]);

private doubl e Convert(doubl e usPrice, CurrencyType
target Currency)

{
doubl e target CurrencyPrice = usPrice;
/1 1nplementation ...
return targetCurrencyPrice;

}

}

The SetCurrency method persists the client’s currency preference within the session. The

InstantQuote method then retrieves the currency preference from the client’s session and
converts the price of the security appropriately.

As shown in the preceding example, you can use the string indexer to both set and retrieve
values from the session object. However, you can use the int indexer only to retrieve values
contained within the session object. You can also use the Add method to add items to the

collection managed by the session object.

Because the client might not have selected a target currency, a default value is set within the
Securities object constructor. Even with session state enabled, ASP.NET will still create a
new instance of the Securities object for every request. The constructor will initialize the
value of the target currency only if the value is null.

A potential issue can arise in the preceding example if the client does not support cookies.

By default, ASP.NET clients do not support cookies. In the example, a client that does not
support cookies will always have the price of a stock returned in U.S. dollars. A better design
would be to extend the method signature of InstantQuoteto accept the symbol of the
security as well as the targeted currency. This would also eliminate a network round-trip
because the client would no longer need to call the SetCurrency Web method.

The session object also supports the ICollection and IEnumerable interfaces, which allow
polymorphic enumeration through the items within the collection. The following example
uses the IEnumerable interface to iterate through the collection:

[WebMet hod(true)]
public override string ToString()

{
StringBuilder sb = new StringBuilder();

foreach(string index in this.Session)

{

sb. AppendFormat ("{0} = {1}\n", index,
this. Session[index].ToString());

}

return sb. ToString();
}

This method declaration overrides the Object. ToString method and exposes it as a Web
method. The implementation of the Web method enumerates through the session object via
the IEnumerable interface by using the foreach keyword. Each name/value pair stored within
the session object is appended to an instance of the StringBuilder class. Finally the resulting
string is returned from the Web method.

Application State

State that is global to the application can be stored within the application object. An example
of this is a database connection string. Unlike session state, application state is always
handled in process and cannot be shared between servers in a Web farm. Also unlike
session state, application state is not dependent on the client supporting cookies.

Classes that derive from the WebService class expose the Application property. This
property retrieves an instance of the HttpApplicationState object containing state that is
global to the Web application. The HttpApplicationState class derives from the
NameObijectCollectionBase class. Because the implementation of the
NameObijectCollectionBase class creates a hash table, retrieving a particular value from the
application object is very efficient.

Let's say | want to implement a counter to record the number of times the Web service has
been accessed because the application has been started. | could add the following code to
the InstantQuote method just before | return the price to the customer:

/1 Record the access to the Wb service.

this.Application["H tCounter"] = (int)this.Application["HitCounter"]
+ 1;

Unfortunately, the code has two problems. First, the HitCounter application variable is never
initialized. Every time the above code is executed, it will generate an exception. Second,
because multiple clients can potentially increment the HitCounter application variable
simultaneously, a potential race condition might occur. Let’'s address these issues one at a
time.

ASP.NET provides a framework for handling application startup code within a Web service.
Every Web application can contain a global.asax file. Within the file, you can implement code
that is executed when certain predefined events occur, such as application startup/shutdown
and session startup/shutdown. Application startup is an ideal point to initialize application
variables. The following code initializes the HitCounter application variable during the
application start event within the Global.asax page:

usi ng System
usi ng System Web;

nanespace BrokerageFirm

{

160

public class G obal : HttpApplication

{
protected void Application_Start(Object sender, EventArgs e)
{
/1l Initialize the hit counter to O.
this.Application["Hi tCounter"] = (int)O;
}
}

}

In the Application_Start method, | initialize the HitCounter application variable to zero. | also

explicitly cast it to an int to avoid any ambiguity. Because the ASP.NET runtime executes the

Application_Start method once during the life of the application, you do not have to worry
about concurrency issues.

However, the InstantQuote method can be called by multiple clients simultaneously.
Therefore, you must avoid potential race conditions when you update the data. Even though
incrementing the HitCounter application variable is represented by a single line of C# code,
the single line will be translated into multiple machine instructions when it is compiled. Here
is the resulting IL code:

IL_0074: ldarg.0

IL_0075: call i nstance cl ass
[Syst em Web] Syst em Web. Ht t pAppl i cati onState
[Syst em Web. Servi ces] Syst em
Web. Servi ces. WebSer vi ce: : get _Application()

IL_007a: Ildstr "Hi t Counter"
IL_007f: Ildarg.0
IL_0080: call i nstance cl ass

[System Web] System Web. Ht t pAppl i cati onState
[Syst em Web. Servi ces] Syst em Web. Servi ces.
WebSer vi ce: : get _Application()

IL_0085: Ildstr "Hi t Counter"

IL_008a: callvirt i nstance obj ect

[System Web] Syst em Web. Ht t pAppl i cationState: :

get _ltem(string)
I L_008f: unbox [mecorlib] System I nt 32
IL_0094: Idind.i4
IL_0095: Idc.i4.1

IL_0096: add
IL_0097: box [mecorlib] System I nt 32
IL_009c: callvirt i nstance void

[Syst em Web] Syst em Web. Ht t pAppl i cati onSt at e:

set _Iten(string, object)

161

IL_00al: Ildarg.0

IL_00a2: call i nstance cl ass
[System Web] Syst em Web. Ht t pAppl i cati onSt ate
[Syst em Web. Servi ces] Syst em Web. Servi ces.
WebServi ce: : get _Application()

The single line of C# code translates to 15 lines of IL, and then the IL is compiled to

numerous machine codes before it is executed. Because the code can be executed
simultaneously by two or more clients, this will lead to unpredictable results.

As an example of the problems that can occur if two clients (A and B) attempt to run the
same code simultaneously, suppose that the HitCounter application variable was initially set
to 1 and client A executes the above IL to increment the value to 2. IL_008a obtains the
initial value of 1 for HitCounter. IL_009c sets HitCounter to a new value of 2. Suppose also
that client B updates the value of HitCounter to 2 somewhere between IL_008a and IL_009c.

Because client A will be incrementing the previously retrieved value of 1, HitCounter will be
incorrectly set to 2 instead of the correct value of 3.

The application object provides a locking mechanism to ensure that writes made to the data
are performed serially, thereby avoiding race conditions such as the one described in the
preceding paragraph. Operations that require serialized access to the data can be performed
between the Lock and Unlock methods provided by the application object. The following

example properly updates the HitCounter application variable each time the InstantQuote
Web method is invoked:

usi ng System
usi ng System Web. Servi ces;

nanespace BrokerageFirm

{
[SoapRpcServi ce]

public class Securities : WbService

{

public enum CurrencyType

{
US_DOLLARS,
UK_POUNDS,
GE_DEUTSCHVARKS

[WebMet hod]

public double InstantQuote(string synbol,
CurrencyType targetCurrency)
{

doubl e price = 0;

/1 1nplementation...

162

/'l Record the access to the Web service.
this. Application. Lock();

this. Application["Hi tCounter"] =
(int)this. Application["HitCounter"] + 1;
this. Application["LastSynbol"] = synbol;

return Convert(price, targetCurrency);

private doubl e Convert (doubl e usPrice,
CurrencyType targetCurrency)

{
doubl e target CurrencyPrice = usPrice;
/1 1nplenmentation...
return target CurrencyPrice;

}

}

By locking the application object before attempting to increment it, you ensure that you will
have exclusive access to the lock on the application object. Because all calls to Unlock will
be blocked, you should call the Unlock method as quickly as possible to avoid hindering
throughput. Note, however, that eve n when you have locked the application object, you do
not have exclusive access to the data. Therefore, to avoid race conditions from being
introduced into your application, you must ensure that a common locking scheme is used
throughout your application.

You should also look for opportunities where application scoped data can be updated
without locking the application object. Notice that | also updated the LastSymbol application
variable with the last symbol that was successfully processed by the Web method. In this
case, | was not concerned about race conditions because by definition the last security
qguoted would have been processed by the Web method that last updated the LastSymbol
application variable.

If both the LastSymbol and the LastPrice application variables needed to be set, | would

have updated both of them before unlocking the application object. This would avoid a
situation in which client A was the last one to update LastPrice and client B was the last one

to update LastSymbol.

Before moving to the next topic, | want to offer a word of caution about the use of the Lock
and Unlock methods. You should ensure that every time a Web method calls Lock, Unlock is
called as soon as possible; otherwise, you run the risk of blocking other requests that are
currently being processed by the Web service. A good design pattern is to call the Unlock
method within the finally section of a try/catch block. Here is an updated example of the
Purchase method:

163

/'l Record the access to the Wb service.
try
{

this.Application.Lock();

this. Application["Hi tCounter"] =
(int)this. Application["HitCounter"] + 1;
}
catch(Exception e)

{

/1 Handl e exception ...

}
finally

{
this. Application. UnLock();

/1 Significant processing to quote the price...

this. Application["LastSynbol"] = synbol;

Because the Unlock method call was placed within the finally section of the try/ catch block,

Unlock will be called even if the code to update the HitCounter application variable fails (for
example, when an OverflowException is thrown as a result of the addition). This ensures that
other ASP.NET worker threads will not be needlessly blocking on a call to Lock.

What if you forget to unlock the application object before your Web method returns? A
mistake such as this could have a detrimental effect on your application. The next time you

try to obtain the lock for the application object, the call to Unlock will deadlock. Fortunately,
the ASP.NET runtime prevents this from happening. When a Web method returns, the
ASP.NET runtime ensures that the lock obtained on the application object is freed.

One of the biggest problems with using the application object to implement a hit counter is
that it is the developer’s responsibility to ensure that the application object is locked before

the counter is incremented. A better alternative would be to leverage static properties. As
with the application object, static properties are scoped to the application. Unlike the
application object, you can associate behavior with static properties. For example, consider
the following HitCounter class.

public class HitCounter

{
private static int count = O;
private static object countLock = new object();

private HitCounter() {}

public static int Count
{

14

get { return count; }

public static void Increnent()

{

| ock(count Lock)

{

count ++;

}

Instead of storing the hit counter within the application object, | define a class that

implements a property and a method for accessing and manipulating the hit counter.
Because the field containing the current count is declared as private, developers that use the

class cannot increment it directly. Instead, the HitCounter class exposes a public read-only
static property to access the current count and a public static method to increment the hit
counter. The Increment method uses the lock keyword to ensure that there is no potential for
a race condition while incrementing the counter.

Defining and Processing SOAP Headers

Recall that SOAP headers are used to contain metadata related to the body of the message.

ASP.NET provides a mechanism for defining and processing SOAP headers. In this section,
I explain how to formally define SOAP headers that are exposed by an ASP.NET Web
service. | also explain how to process SOAP headers that are received from the client.

You can define a new header by deriving from the SoapHeader class. You can associate the
new header with a particular endpoint within the Web service by using the SoapHeader

attribute. Table 6-7 lists the properties exposed by the SoapHeader class.
Table 6-7: Properties of the SoapHeader Class

| Property ‘ Description
|Actor ‘ Indicates the intended recipient of the header
DidUnderstand Indicates whether a header whose mustUnderstand
attribute is true was understood and processed by the
recipient
EncodedMustUnderstand Indicates whether a header whose mustUnderstand

attribute is true and whose value is encoded was
understood and processed by the recipient

MustUnderstand Indicates whether the header must be understood and
processed by the recipient

By default, the name of the class derived from SoapHeader will become the name of the root
header element, and any public fields or properties exposed by the class will define

elements within the header.

166

As | mentioned earlier in the chapter, price quotes from other services on the Web are often
time-delayed and can be more than 20 minutes old. Price quotes obtained using the

InstantQuote Web method are not subject to these delays. Because the InstantQuote Web
method obtains the price that a particular stock is currently trading at on the exchange’s
floor, | feel that | can charge the client $1.50 for each quote. | will therefore require every
SOAP request made to the InstantQuote Web method to be accompanied by the Payment
SOAP header, which will contain the client’s credit card information. This information will be
used to pay the $1.50 transaction fee.

SOAP headers are defined by classes derived from the SoapHeader class. Elements within
the header are defined by public fields or read/writable properties. Here is the definition of
the Payment header:

[Xm Root (" Paynment ")]
public cl ass SoapPaynent Header : SoapHeader

{
private string nameOnCard;
private string creditCardNunber;
private CardType creditCardType;
private DateTi me expirationDate;

public enum CardType

{

VI SA,

MC,

AKX,

DI SCOVER
}

public string NameOnCard

{
get { return naneOnCard; }

set { naneOnCard = val ue; }

public string CreditCardNunber

{
get { return creditCardNunber; }
set { creditCardNunber = val ue; }

public CardType CreditCardType

{
get { return creditCardType; }

166

set { creditCardType = val ue; }

public DateTine ExpirationDate
{

get { return expirationDate; }

set { expirationbDate = val ue; }

}

The preceding class definition defines a SOAP header named Payment with four child
elements: nameOnCard, creditCardNumber, creditCardType, and expirationDate. The
XmlIRoot attribute is used to instruct the XML Serializer to name the header element
Payment instead of the class name. | will cover the XML Serializer in Chapter 7.

Once the payment has been received and the Web method has been processed, | want to
send a header containing a confirmation of the purchase back to the client. SOAP headers
sent from the server to the client are defined in the same manner. The following code
defines a header containing the amount that was charged as well as the reference number
of the credit card transaction:

[Xm Root (" Recei pt")]

public cl ass SoapRecei pt Header : SoapHeader

{
private doubl e anount;
private int referenceNunber;
public doubl e Anpunt
{
get { return amount; }
set { amount = value; }
}
public int ReferenceNunber
{
get { return referenceNunber; }
set { referenceNunber = value; }
}
}

Once you define the headers, the next step is to associate them with the InstantQuote Web
method. The SoapHeader attribute is used to associate a SOAP header with a Web method.

A public member variable is added to the WebService class to hold an instance of the class
derived from the SoapHeader class. The name of the member variable is then

communicated to the ASP.NET runtime via the SoapHeader attribute. Here is the Securities
class definition:

167

public class Securities : WbService

{

publ i ¢ Paynment Header paynent Header ;
publ i ¢ Recei pt Header recei pt Header = new Recei pt Header () ;

public enum CurrencyType

{
US_DOLLARS,
UK_POUNDS,
GE_DEUTSCHVARKS

}

[WebMet hod]

[SoapHeader (" paynent Header ",

Di recti on=SoapHeader Di rection.In, Required=true)]
[SoapHeader ("recei pt Header ",

Di recti on=SoapHeaderDi recti on. Qut, Required=true)]

public double InstantQuote(string synbol, CurrencyType
target Currency)

{

doubl e price = 0;

/1 1nplementation ...

return Convert(price, targetCurrency);
}

private doubl e Convert(double usPrice, CurrencyType
target Currency)

{
doubl e target CurrencyPrice = usPrice;
/1 Tnplenmentation...
return targetCurrencyPrice;

}

}

| create two member variables to hold the data contained in the Payment and the Receipt
SOAP headers. | create an instance of the SoapReceiptHeader class because the Receipt
header will be passed to the client. | do not create an instance of the SoapPaymentHeader

class because the ASP.NET runtime is responsible for creating this object and populating its
properties with the data contained within the Payment header received from the client.

Next | add two SoapHeader attributes to declare that the headers should formally be
described as part of the Web method. The constructor of the SoapHeader attribute takes a
string that contains the name of the public member variable that should be associated with
the SOAP header.

| also set two optional properties, Direction and Required. The Direction property indicates
whether the client or the server is supposed to send the header. The Required property
indicates whether the property must appear within the SOAP message. Let’s discuss each
property in detail.

The Direction property indicates whether the header is received from the client, sent to the
client, or both. The Payment header is received from the client, and the Receipt header is
sent to the client, so | set the Direction property to SoapHeaderDirection.Inand
SoapHeaderDirection.Out, respectively. If a SOAP header is received from the client and
then sent back to the client, the value of the Direction property should be set to
SoapHeaderDirection.InOut.

The Required property indicates whether the header must appear within the SOAP message
to be considered valid by the Web service. If the Required property is not set within the
attribute tag, the default value is true. Inbound headers marked as required must be included
in the request message; otherwise, a SoapException will be thrown by the ASP.NET
runtime.

Because a Payment header must be included in every request and a matching Receipt
header must be included in every response, | set the Required property to true for both

SOAP headers. The Required property has no bearing on whether the header will be
processed o even understood by the recipient of the message. For example, the Receipt
header must always be passed back to the client, but the client is not required to process the
header.

Now that | have associated the Payment and Receipt headers with the Web method, the

next task is to process the Payment headers. The following code uses the information within
the Payment header to bill the client’s credit card using an arbitrary credit card processing
component:

public class Securities : WhbService

{

publ i ¢ SoapPaynment Header payment Header ;

publ i ¢ SoapRecei pt Header recei pt Header = new
SoapRecei pt Header () ;

public enum CurrencyType

{
US_DOLLARS,
UK_POUNDS,
GE_DEUTSCHVARKS
}

169

[WebMet hod]

[SoapHeader (" payment ", Direction=SoapHeaderDirection.]In,
Requi red=true)]

[SoapHeader ("recei pt", Direction=SoapHeaderDirection. Qut,
Requi red=true)]

publ i c doubl e I nstant Quote(string synbol, CurrencyType
tar get Currency)

{
/1 Declare and initialize variabl es.
doubl e price = 0;
i nt mer chant Nunber = 123456789;
doubl e fee = 1.50;
i nt ref erenceNunber = 0;

/'l Apply the fee to the client's credit card.
Credi t CardProcessor creditCardProcessor =
new (edit Car dProcessor (mer chant Nunmber) ;

ref erenceNunber =

creditCardProcessor.Bill (fee, paynentHeader);

/'l Verify that the credit card was processed.

if(referenceNunber > 0)

{
/1 Set the return header information.
recei pt Header . Ref erenceNunber = referenceNunber;
recei pt Header . Amount = fee;

}

el se

{
t hrow new SoapException("The Paynment header was either
m ssing or contained invalid information.",
SoapException. dient Faul t Code) ;

/1 1Inplenmentation...

return Convert(price, targetCurrency);

}

The preceding code uses the information within the Payment header to charge the required
fee to the client’s credit card. If the credit card is successfully processed, the Receipt header

170

will be populated with the reference number of the transaction as well as the amount that
was charged to the card. If the credit card is not successfully processed, a SoapException
will be raised. Because the exception is a result of insufficient information sent from the
client, the fault code is set to Client.

The current implementation has one problem related to processing headers. In Chapter 3, |
said that the client has the ability to send additional headers other than what was expected.
The client can also set the mustUnderstand attribute to true on these additional headers. |
will discuss how to process headers you were not expecting shortly. But let’s first discuss
setting and analyzing the mustUnderstand attribute for a particular SOAP header.

The MustUnderstand property exposed by the SoapHeader class is fundamentally different
from the Required property set by the SoapHeader attribute (which | discussed earlier). The
Required property specifies whether a header must be included within a message. If the
header resides within a message, the MustUnderstand property is used to specify whether
the recipient of the message must understand and process the header. Let’s discuss these
two properties in detail.

The Required property specifies whether the header must be included within the message
exchanged between the client and the server for a particular Web method. Because this
property is specific to the interface of a Web service, changes to it are reflected in the WSDL
document. If the Required property is set to true, the required attribute within the header
element defined by the SOAP binding extensibility elements will be set to true. Finally, if a
Web method defines a SOAP header as required, ASP.NET cannot support the HTTP GET/
POST bindings.

The MustUnderstand property specifies whether a specific header within a message must be
understood and processed by the client. Because this property is specific to a particular
exchange between the client and the server, changes to it are reflected in the SOAP
message itself. If the MustUnderstand property is set to true, the mustUnderstand attribute
within an instance of the header will be set to true.

The DidUnderstand property of an object derived from SoapHeader notifies the ASP.NET
runtime to tell the client which headers were processed by the Web method.

The default value of the DidUnderstand property is true for headers formally defined by the
Web method, so make sure that there cannot be a code path in which the method returns
without processing a header. The client might have set the mustUnderstand attribute to true.
If so, this is considered an error if the Web method does not throw a SoapException.

In the case in which a header might not be processed, you might want to set the
DidUnderstand property to false at the beginning of the Web method. Once the header is
processed, set the DidUnderstand property back to true.

Another option is to include the value of the MustUnderstand property in the decision about
whether to process the header. For example, the InstantQuote method sets the Required
property of the Payment header to true. However, the InstantQuote method is responsible
for processing the header only if the MustUnderstand property is true. Let's say that if the
administrator invokes the InstantQuote Web method, the Payment header should not be
processed unless the MustUnderstand property is true, as shown here:

/'l Apply the fee to the client's credit card only if the user is not
/1l the administrator or if the header nust be processed.
if(User.ldentity !'= "Administrator” || paynmentHeader. Must Under st and)

{

171

Credi t CardProcessor creditCardProcessor =
new Credit Car dProcessor (mer chant Nunber) ;

ref erenceNunber = creditCardProcessor.Bill (fee, paynent);

}

| want to discuss one final point about the MustUnderstand and DidUnderstand properties.
After the Web method returns, the ASP.NET runtime will determine whether any headers
passed by the client containing a mustUnderstand attribute set to true also have their
associated DidUnderstand property set to false. If this is the case, the ASP.NET runtime will
automatically throw a SoapException. The Web method might have code that attempts to
undo actions done on a client’s behalf before throwing the exception. Because this exception
is thrown after the Web method has returned, this code will never execute.

Let's say a client calls the InstantQuote Web method within the context of a transaction. The
client passes a Transaction header along with the Payment header and sets its
mustUnderstand attribute to true. Because the previous implementation does not check for
the presence of a Transaction header, the Web service processes the request, including
billing the client’s credit card. After the method returns, the ASP.NET runtime notices that the
Transaction header’s DidUnderstand property is set to false and throws an exception. In this
case, the client does not receive the quote but will still be billed the $1.50 transaction fee.
This scenario would result in one unhappy customer.

There are at least two ways to avoid this adverse side effect. If the affected resources are all
managed by a DTC Resource Manager, you can set the TransactionOption property of the
WebMethod attribute to Required. Once the ASP.NET runtime throws an exception, the
transaction will be aborted and all changes rolled back. If the CreditCardProcessor
component can participate in a DTC -controlled distributed transaction, the fee charged to the
card will automatically be rolled back.

Another option is to verify that all headers received by the Web service with a
mustUnderstand attribute set to true have been processed before the Web method returns.
Catching headers that must be understood but cannot be processed by the Web service
early on within the Web method can potentially save unnecessary processing cycles. If the
Web method does not know how to process one of the headers passed to it, it can take
appropriate action before throwing an exception. In the next section, | discuss how to
examine the MustUnderstand property of unknown headers.

Processing Unknown Headers

The ASP.NET page framework provides a mechanism for inspecting and processing

headers that are not formally defined by the Web method. You can, for example, determine
up front whether there are any unknown headers that have their mustUnderstand attribute
set to true. If there are any headers that must be understood, but that the Web method does
not know how to process, you can throw an appropriate SoapException up front.

The SoapUnknownHeader class is derived from SoapHeader and can be used to inspect or
process headers not formally defined by the Web method. Because the
SoapUnknownHeader class is derived from SoapHeader, it exposes properties such as
MustUnderstand and DidUnderstand.

An object of type SoapUnknownHeader is loosely typed because the only additional property
defined is Element, which is of type XmlElement. The Element property serves as an entry
point to the root element of the header. You can use the XML DOM to interrogate the
contents of the header.

172

You can associate the SoapUnknownHeader class with a Web method using the
SoapHeader attribute (just as you can with any other class that derives from SoapHeader). If
more than one header can be received by the Web method, as is the case with unknown
headers, the property associated with the Web method can be an array.

Recall that the previous implementation of the InstantQuote Web method had a flaw. If an
unknown header that must be understood by the Web service is received by the client, credit
card users will be charged the fee but will receive a SOAP fault automatically generated by
the ASP.NET runtime. To solve this problem, the following example obtains a list of unknown
headers, iterates through the list, and then throws a SoapException once the first
SoapUnknownHeader is encountered that has its MustUnderstand property set to true:

[WebMet hod]

[SoapHeader (" paynent Header ", Directi on=SoapHeaderDi rection.In,
Requi red=true)]

[SoapHeader ("r ecei pt Header", Directi on=SoapHeaderDi rection. Qut,
Requi red=true)]

[SoapHeader ("unknownHeader s", Required=fal se)]

public doubl e InstantQuote(string synbol, CurrencyType
target Currency)

{
/1 Declare and initialize variables.
double price = 0;
i nt mer chant Nunber = 123456789;
double fee = 1.50;
int ref erenceNunber = O;
/1l Check to see whether any unknown headers nust be processed.
f or each(SoapUnknownHeader header in unknownHeaders)
{
i f (header. Must Under st and)
{
string nessage = "The " + header. El enent. Nane +
" header could not be processed.";
t hrow new SoapExcepti on(nmessage,
SoapExcepti on. Must Under st andFaul t Code) ;
}
}
/'l The rest of the inplenentation...
}

The Web method checks for unknown headers that must be understood by the client before
the credit card is processed. If a header that must be understood cannot be processed, the

client will not be charged the fee for using the Web service.

173

Using SOAP Extensions

In the preceding section, | wrote a fair amount of code to process the SOAP Payment
header. A Web service might potentially expose many Web methods that require the
Payment header to be processed, so it is not ideal to have every method contain code to
process the payment information. The code within the method should be responsible for the
business logic, not handling tasks that can be pushed to the infrastructure. In this section, |
show you how to provide extended services, such as processing the Payment SOAP
header, that can be applied to any Web method.

SOAP extensions provide a way of creating encapsulated reusable functionality that you can
apply declaratively to your Web service. The SOAP extensions framework allows you to
intercept SOAP messages exchanged between the client and the Web service. You can
inspect or modify a message at various points during the processing of the message. You
can apply a SOAP extension to either the server or the client.

A SOAP extension is composed of a class derived from the SoapExtension class. It contains
the implementation details that are generally used to examine or modify the contents of a
SOAP message. You can then define an attribute derived from SoapExtensionAttribute that
associates the SOAP extension with a particular Web method or a class.

SOAP Extension Attributes

You use a SOAP extension attribute to indicate that a particular SOAP extension should be

called by the ASP.NET runtime for a particular Web method. You can also use the SOAP
extension attribute to collect information that will be used by the SOAP extension.

My first SOAP extension example will automatically process the Payment and Receipt
headers | created in the last section. Instead of including code within the implementation of
the InstantQuote Web method, | will create an attribute called ProcessPayment that can be
used to decorate Web methods that require the Payment header to be processed. Later | will
create the ProcessPaymentExtension class, which will contain the actual implementation.
Here is the implementation of the ProcessPayment attribute:

[AttributeUsage(AttributeTargets. Method)]
public class ProcessPaynentAttribute : SoapExtensionAttribute

{

int mer chant Nunber = 0;
doubl e fee = 0;
i nt priority = 9;

public ProcessPaynment Attri bute(int merchant Nunber, double fee)

{

t hi s. mer chant Nunber = ner chant Nunber ;

this.fee = fee;

public int Merchant Nunber
{

get { return nerchant Nunber; }

174

set { merchant Nunmber = val ue; }

public doubl e Fee
{

get { return fee; }

set { fee = value; }

public override Type ExtensionType
{

get { return typeof (ProcessPaynment Ext ension); }

public override int Priority

{
get { return priority; }
set { priority = value; }

}

The ProcessPayment attribute is responsible for gathering the information needed by the
SOAP extension. The SOAP extension will require the merchant account number and the
fee the client should be charged to process the payment. Thus, both the merchant number
and the fee must be passed as part of the ProcessPayment attribute’s constructor. | also
create associated MerchantNumber and Fee properties because the only mechanism for
passing information from the SOAP extension attribute to the SOAP extension is by
exposing the information as a public field or a public property.

Attributes that derive from SoapExtensionAttribute must override the ExtensionType

property. This property returns an instance of the Type object of the SOAP extension class.
The ASP.NET runtime will access this property to locate its associated SOAP extension.

All SOAP extension attributes must override the Priority property. This property specifies the
priority in which the SOAP extension will be executed with respect to other SOAP

extensions. | gave the Priority property a default value of 9 so that it can be optionally set by
the user of the attribute.

The priority of the SOAP extension is used by ASP.NET to determine when it should be
called in relation to other SOAP extensions. The higher the priority, the closer the SOAP
extension is to the actual message being sent by the client and the response sent by the
server. For example, a SOAP extension that compresses the body and the header of a
SOAP message should have a high priority. On the other hand, the ProcessPayment SOAP
extension does not need to have a high priority because it can function properly after other
SOAP extensions have processed.

SOAP Extension Class

15

The SOAP extension class contains the implementation of the SOAP extension. In the case
of the ProcessPaymentExtension class, it will process the Payment header on behalf of the
Web method. A SOAP extension derives from the SoapExtension class. The ASP.NET
runtime invokes methods exposed by the class at various points during the processing of the
request. These methods can be overridden by the SOAP extension to provide custom
implementation. Table 6-8 describes the methods that can be overridden by a custom SOAP
extension.

Table 6-8: SoapExtension Class Methods

Method Description

ChainStream Provides a means of accessing the memory buffer containing the
SOAP request or response message.

Getlnitializer Used to perform initialization that is specific to the Web service
method. This method is overloaded to provide a separate initializer
for a single method or for all methods exposed by a type.

Initialize Used to receive the data that was returned from Getlnitializer.

ProcessMessage Provides a means of allowing the SOAP extension to inspect and
modify the SOAP messages at each stage of processing the

request and response messages.

The SOAP extension framework provides two methods of accessing the contents of the
message. One way is through a stream object received by the ChainStream method that
contains the raw contents of the message. The other way is through the properties and
methods exposed by the instance of the SoapMessage object passed to the
ProcessMessage method. For the ProcessPaymentExtension class, | will use the
SoapMessage class.

The SOAP extension framework also provides a two-step initialization process through the
Getlnitializer and Initialize methods. The initialization process is designed to reduce the
overall initialization cost associated with the extension. | discuss this in more detail later in
this section.

The following diagram shows the order of the individual calls the ASP.NET runtime makes to
the SOAP extension:

176

Cepiratipli or
[Prisny -8

'

L [T
{Pricrity 1=}

H

ChizinSieaen
{Prigriy 1=9)

!

Processheisage
{BalorsDesanakza)
|Pricaty 1-9)

'

Irvpnn Mathod

'

P e M el
[ARerDnsainlizeg
(Prigeity 1=3)

'

ChmnSrenm
[Prcnty 1=8)

'

ProcessMassags
(BaloreSerniatize)
(Prioasy B=1)

!

ProcessMassacs
[ARarSenalice)
[Pricnty 8-1)

If multiple extensions are associated with a Web method, every extension will be called
during each stage in the order of priority. For example, the Getlnitializer method will be
called on each SOAP extension before the ChainStream method is called. Except for the
BeforeSerialize and AfterSerialize modes of the ProcessMessage method, each method will
first call SOAP extensions that have a priority of 1 and then call the remaining extensions in
ascending order of priority. When you invoke the ProcessMessage method during the
BeforeSerialize and AfterSerialize modes, ProcessMessage will call the extensions in
reverse order of priority.

Initialization

A new SOAP extension object is created each time the Web method associated with it is
invoked. The SOAP extension often performs initialization that is generic across all
invocations of the Web method. The SOAP extension framework provides a means of
executing initialization code that should occur once.

The SOAP extension framework supports a two-phase initialization sequence. The

Getlnitializer method performs the initialization for a particular Web method, in this case the
InstantQuote method. Getlnitializer will be called only once per Web method for the life of

the Web application. The Initialize method will be called each time the Web method is
invoked.

To process the Payment header, | need to initialize a credit card processor object. Once it is

initialized, it can be used to process any number of Payment headers. Let's assume that
there is a nontrivial cost associated with initializing the object. | can initialize it once within

the Getlnitializer method and then use it each time the InstantQuote Web method is invoked.

Here is the implementation of the Getlnitializer method:

public override object Cetlnitializer(Logical Methodlnfo nethodlnfo,
SoapExt ensi onAttribute attribute)

{

ProcessPayment Attri bute processPaynent Attribute =
(ProcessPayment Attribute)attribute;

/1l Set up connection to credit card authorization service.

credi t CardProcessor = new
Credi t Car dProcessor (processPaynent At t ri but e. Mer chant Nunber) ;

/1 Return the initialized credit card processor object and the
f ee.

return new object [] {creditCardProcessor,
processPaynment Attri but e. Fee};

}

Notice that when ASP.NET invokes the Getlnitializer method, the extension’s associated

attribute is passed as a parameter. The attribute is used to obtain the MerchantNumber as
well as the Fee properties. The method initializes the credit card processor.

This same credit card processor will then be used each time the InstantQuote Web method
is invoked. However, recall that a new instance of the ProcessPaymentExtension object is
created each time the Web method is invoked. So how can | use the same instance of the
credit card processor object across all invocations of the Web method? The following
diagram illustrates the problem.

508> y 7 o :
Esaion =l L | — —
Ot 1 | 1 1 [1 1
Corenil Gand - : . - - : ‘!I
Peacassor 1

| 1 1 i | | 1 1

Getvupalsps e Medhod Wi WP fripgie blaihog

You might have noticed that Getlnitializer has a return parameter of type object. The
implementation of the Getlnitializer method for the ProcessPaymentExtension object returns
a two-element array containing the initialized credit card processor object as well as the fee
that should be charged to the customer. The ASP.NET runtime retains a reference to this
array and passes it to the Initialize method each time a new object is created as a result of
invoking the InstantQuote Web method.

One of the responsibilities of the Initialize method is to obtain the data returned to the
ASP.NET runtime by the Getlnitializer method. The Initialize method can also be used to
perform any additional initialization that needs to occur for a particular Web method
invocation. The following code shows the implementation of the Getlnitializer and Initialize
methods:

public class ProcessPayment Ext ensi on : SoapExt ension

{

Credit CardProcessor creditCardProcessor;

178

doubl e fee = 0;

i nt ref erenceNunber = 0;
SoapPayment Header payment = null;
SoapRecei pt Header recei pt = new SoapRecei pt Header () ;

public override object Getlnitializer(Type type)
{

return typeof (ProcessPaynent Ext ensi on);

public override object Getlnitializer(Logical Methodlnfo
met hodl nf o, SoapExtensionAttribute attribute)
{
ProcessPayment Attri bute processPaynent Attribute =
(ProcessPaynent Attribute)attri bute;

/1 Set up connection to credit card authorization service.
credit CardProcessor =

new
Credi t Car dProcessor (processPaynent Att ri but e. Mer chant Nunber) ;

/!l Return the initialized credit card processor object and
the fee.

return new object [] {creditCardProcessor,
processPaynent Attri but e. Fee};

public override void Initialize(object initializer)

{
/!l Retrieve the credit card processor and the fee
/'l fromthe initializer parameter.

credit CardProcessor =
(CreditCardProcessor)((object[])initializer)[0];

fee = (double)((object[])initializer)[1];

/1l The rest of the inplenmentation...

}

The Initialize method performs any initialization that is specific to the method invocation. In
the case of the ProcessPaymentExtension extension, no initialization needs to be

10

accomplished. The only action is assigning the credit card processor object and the fee to a
member variable within the class.

Processing the Message

The ProcessMessage method contains the implementation for processing the request
message received from the client and the response message sent by the Web service.
ProcessMessage is called by the ASP.NET runtime at four points. It is called twice during
the process of deserializing the request message, once before the message is deserialized
and once after. The ProcessMessage method is also called twice during the process of
serializing the response message, once before serialization and once after.

Each time the ProcessMessage method is called, it is passed an instance of the

SoapMessage class. During the BeforeSerialize and AfterSerialize stages, the object is
initialized with the data contained within the SOAP message. Here is the implementation of
the ProcessMessage method:

public override void ProcessMessage(SoapMessage message)
{
switch (nessage. St age)
{
case SoapMessageSt age. Bef oreDeseri al i ze:

Trace. Wi teLi ne("ProcessMessage(Bef oreDeseri alize)
called.");

br eak;

case SoapMessageSt age. AfterDeseriali ze:

Trace. WiteLine("ProcessMessage(AfterDeserialize)
called. ");

/1 Set the return header information.
f oreach(SoapUnknownHeader h in nmessage. Headers)
{
Trace. Wi teLine(h. El ement. Nane) ;
}

i f (message. Header s. Cont ai ns(paynent))

{

ref erenceNunber = this.creditCardProcessor.Bill (fee,
paynent) ;

}
el se
{
/1 Throw exception.
t hrow new SoapException
("The required Paynment header was not found.",
SoapException. Cl i ent Faul t Code) ;

/1 Verify that the credit card was processed.
i f(referenceNunber > 0)

{
/1 Set the return header information.
recei pt. Ref erenceNunber = referenceNunber;
recei pt. Amount = fee;

}

el se

{
t hrow new SoapException
("The credit card number could not be confirmed.",

SoapException. Cient Faul t Code) ;
}
br eak;

case SoapMessageStage. BeforeSerialize:

Trace. WiteLine("ProcessMessage(BeforeSerialize)
called.");

nessage. Header s. Add(recei pt);
br eak;

case SoapMessageStage. AfterSeriali ze:

Trace. WiteLine("ProcessMessage(AfterSerialize)
called.");

br eak;

def aul t:

t hrow new SoapException("An invalid stage enuneration
was passed.",

SoapExcepti on. Server Faul t Code) ;

}

The SoapMessageStage property determines at which of the four stages the message is
called. | use a switch case statement to identify the stage at which ProcessMessage is
called.

The code to process the Payment header accesses the header information via the message
parameter. The message object is populated with the data contained within the SOAP
request message only after the message has been deserialized. Therefore, the code to

process the payment information is placed within the SoapMessageStage.AfterDeserialize
case block.

Likewise, the code to add the Receipt header to the SOAP response message does so via
the message object’s Header property. The message object is populated with the data
contained within the SOAP request message only before the request message has been
deserialized. Therefore, the code to process the payment information is placed within the
SoapMessageStage.BeforeSerialize case block.

The code to process the payment information differs only slightly from the code |
implemented in the SOAP Header section. One difference is that | use the preinitialized
instance of the ProcessCreditCard object instead of creating a new one. The other difference
is that the Payment header is obtained from the message object. The message object
exposes the Headers property, which is of type SoapHeaderCollection. | obtain the Payment
header by calling the Contains method on the instance of the SoapHeaderCollection object
exposed by the Headers property.

The SoapMessage class contains other methods and properties that can be used within the
ProcessMessage method. Table 69 describes some of them.

Table 6-9: Selected Properties and Methods of the SoapMessage Class

| Property ‘ Description

|Action ‘ Contains the value of the SOAPAction HTTP header
| ContentType ‘ Gets/sets the value of the Content-Type HTTP header
| Exception ‘ Gets the SoapException thrown from the method
Headers Gets a collection of SOAP headers (SoapHeaderCollection)
within the message
MethodInfo Gets an dbject of type LogicalMethodinfo that can be used to
reflect on the method signature
OneWay Indicates whether the request message is accompanied by a
response
Stage Indicates the stage of processing during which the call was
made to ProcessMessage
Stream Obtains an object of type Stream containing the SOAP
message
| Url ‘ Gets the base URL of the Web service
| Method ‘ Description
GetlnParameterValue Obtains a parameter at a particular index that was passed to

the Web service

GetOutParameterValue Obtains an out parameter at a particular index that was
passed to the Web service

GetReturnValue Obtains the return parameter intended for the client

ChainStream Method

Another way to access the data contained within a SOAP message is using the
ChainStream method. This method is used by the extension to receive a raw stream

containing the contents of the message and to pass the modified version of the stream back
to the ASP.NET runtime.

The next example uses a SOAP extension that logs the messages being exchanged
between the client and the server. The SoapTrace attribute can be applied to any method.
Its associated SoapTrace extension accesses the stream to write the contents of the
message to a file.

[AttributeUsage(AttributeTargets. Method)]

public class SoapTraceAttribute :

{

}

SoapExt ensi onAttri bute

private string fileNanme = "c:\\tenp\\SoapTrace. | og";

private int priority;

public SoapTraceAttribute() {}

public SoapTraceAttribute(string fil eNane)
{

this.fileNanme = fil eNaneg;

public override Type ExtensionType

{

get { return typeof (SoapTraceExtension);

public override int Priority
{
get {return priority;}
set {priority = value;}

public string Fil eNane

{
get {return fileNane;}
set {fileName = val ue;}

}

First | declare the SoapTrace attribute. It contains an optional constructor that can be used
to set the name of the trace log. If the filename is not set, it defaults to

c:\temp\SoapTrace.log.
public class SoapTraceExtension : SoapExtension

{

string fil eNane;

Stream i nboundSt r eam

St r eam out boundSt r eam

bool postSerializeHandl ers = fal se;

| declare a few private member variables. The fileName variable holds the filename of the
log file obtained by the SoapTrace attribute. The inboundStream and outboundStream

variables hold references to the inbound and outbound streams, respectively. Finally
postSerializeHandlers indicates whether the BeforeSerialize and AfterSerialize methods
have been called. This variable will be used by the ChainStream method.

public override object Getlnitializer(Type type)
{

return typeof (SoapTraceExtension);

public override object Getlnitializer(Logical Met hodl nfo nethodl nf o,
SoapExt ensi onAttri bute attri bute)
{

return ((SoapTraceAttribute) attribute).Fil eNane;

public override void Initialize(object initializer)
{
fileName = (string) initializer;

}

During Getlnitializer, | retrieve the FileName property from the SoapExtension attribute. As
with the previous extension, this value will be passed to the Initialize method.

public override Stream Chai nStreanm(Stream stream)

{
/1 Set the streans based on whether we are about to call
/1 the deserialize or serialize handlers.
i f(! postSerializeHandl ers)

{
i nboundStream = stream
out boundStream = new MenoryStream();
return outboundStream

}

el se

{

out boundStream = stream
i nboundSt ream = new MenoryStream();

return i nboundStream

}

Recall that ChainStream is called twice by the ASP.NET runtime: before the message
received from the client is deserialized, and again before the message that will be sent from
the server is serialized.

Each time ChainStream is called, two stream references are passed between the ASP.NET
runtime and the SOAP extension. The ChainStream method receives a reference to an
inbound stream that contains the original contents of the message. It also returns a
reference to an outbound stream that will contain the contents of the new message. This
effectively creates a chain of streams between the SOAP extensions associated with the
method. The following diagram illustrates the chain that is created:

ASP.MET Runtime

Outbound Stream

¥
Inbound Stream

SOAP Extension

Outbound Stream

¥
Inbound Stream

SOAP Extension

Outbound Stream

h
Inbound Stream

ASP.NET Runtime

At least two aspects of ChainStream can easily trip you up. First, the parameters of the

ChainStream method have a different meaning depending on whether the method is being
called for the first time or the second time. Second, each time ChainStream is called, you
need to create a new stream. The new stream is created for the outbound stream the first

time it is called and for the inbound stream the second time it is called. Let’s talk about each
issue in detail.

ChainStream accepts a single parameter of type Stream and returns a parameter of type
Stream. The first time ChainStream is called, the inbound stream is passed by the ASP.NET

runtime and ChainStream is responsible for returning the outbound stream. The second time
ChainStream is called, the outbound stream is passed by the ASP.NET runtime and
ChainStream is responsible for returning the inbound stream.

To keep my code as straightforward as possible, | use the postSerializeHandlers member
variable to signal whether ChainStream is being called for the first time or the second time. |
use an if/else statement to ensure that inboundStream and outboundStream are always set
appropriately.

The first time ChainStream is called, it needs to return a readable stream that contains the
SOAP message that will be deserialized by the runtime. Because SOAP extensions often
modify the contents of the stream, they often return a new instance of the MemoryStream

class. If ChainStream creates a new stream, it becomes the outbound stream.

The second time ChainStream is called, it needs to return a read/writable stream to the

ASP.NET runtime. The ASP.NET runtime will use this stream to communicate the current
contents of the message to the SOAP extension. Before the BeforeSerialization stage of

ProcessMessage is called, the ASP.NET runtime will populate the stream with the contents
of the SOAP message that was returned by the previously called SOAP extension. When
ProcessMessage is finally called, the inbound stream can then be read by the SOAP
extension, the message can be modified, and finally the new message can be written to the
outbound stream. Therefore, the second time ChainStream is called, it needs to create a
new stream for the inbound stream.

There is one more caveat. The ChainStream method cannot modify the stream it receives
from the ASP.NET runtime. The received stream can be modified only by the

ProcessMessage method. If ChainStream does access any properties or methods of the
stream received from ASP.NET, a runtime exception will occur.

public override void ProcessMessage(SoapMessage message)

{

switch (nessage. St age)
{
case SoapMessageSt age. Bef oreDeseri al i ze:
CopyStrean(i nboundStream out boundStrean);
br eak;

case SoapMessageSt age. After Deseri ali ze:
post Seri al i zeHandl ers = true;

br eak;

case SoapMessageSt age. BeforeSerialize:

br eak;

case SoapMessageSt age. AfterSeriali ze:
WiteTraceLogEntry(" Response");
CopySt rean(i nboundSt ream out boundStrean);

br eak;

defaul t:
t hrow new Exception("invalid stage");

}

The ProcessMessage method is responsible for writing the contents of the inbound stream
to the log file. This is accomplished by calling the WriteTraceLogEntry helper function. It
must also write the contents of the SOAP message to the outbound stream. This is
accomplished by calling the CopyStream helper function. Finally ProcessMessage must set
the postSerializeHandlers member variable used by the ChainStream method to true before
exiting the AfterDeserialize stage.

private void WiteTraceLogEntry(string nessageTitle)

{
/Il Create a file streamfor the log file.
FileStreamfs = new FileStreanm(fil eName, Fil evbde. Append,
Fil eAccess. Wite);

/1l Create a new streamwiter and wite the header of the trace.
StreamWiter witer = new StreanWiter(fs);

witer. WiteLine();

witer. WitelLine("{0} Message Received at {1}:", nessageTitle,
Dat eTi me. Now) ;

writer. Flush();

/1 Copy contents of the streamto the file.
AppendsSt rean(i nboundStream fs);
fs.Cl ose();

}
The WriteTraceLogEntry method writes an entry in the SOAP trace log. It first writes a
header entry, and then it appends the log file with the contents of the inbound stream:

private void CopyStream Stream sourceStream Stream
desti nati onStream

{
I ong sourcePosition = 0;
| ong destinationPosition = O;

/'l 1f seekable, save starting positions of the streans
/1l and set them both to the beginning.
i f(sourceStream CanSeek)

{

sourcePosition = sourceStream Position;
sourceStream Position = 0;

}

i f(destinationStream CanSeek)

{
destinati onPosition = destinati onStream Position;
destinationStream Position = O;

}

/'l Copy the contents of the "to" streaminto the "fronl stream
Text Reader reader = new StreanmReader (sourceStrean);

TextWiter witer = new StreanWiter(destinationStrean);
writer.WiteLine(reader.ReadToEnd());

writer. Flush();

/1l Set the streanms back to their original position.
i f(sourceStream CanSeek) sourceStream Position = sourcePosition;
i f(destinationStream CanSeek)

destinati onStream Position = destinationPosition;

}

The CopyStream method writes the contents of the source stream to the destination stream.
Because not all streams received by the ASP.NET runtime are seekable, a check is made
before the position of a stream is modified:

private void AppendStr ean(Stream sourceStream Stream
destinati onStream

{

I ong sourcePosition = 0;

/'l 1f seekable, save starting positions of the streans
/!l and set them both to the beginning.
i f(sourceStream CanSeek)

{
sourcePosition = sourceStream Position;
sourceStream Position = O;
}
i f(destinationStream CanSeek)
{
destinati onStream Position = destinationStream Lengt h;
}

/1 Copy the contents of the "to" streaminto the "from stream
Text Reader reader = new StreanReader (sourceStrean;

TextWiter witer = new StreanWiter(destinationStream;
writer.WitelLine(reader.ReadToEnd());
writer.Flush();

/'l Set the streams back to their original positions.
i f(sourceStream CanSeek) sourceStream Position = sourcePosition;

}

The AppendStream method is used by WriteTraceLogEntry to append the contents of the
inbound stream to the end of the log file stream.

Using the WSDL Utility to Generate Proxy Code

The ASP.NET page framework provides a set of classes and tools that greatly simplifies
interacting with a Web service. The set of classes provides a base set of functionality for
creating Web service proxies. One of the tools is a utility called WSDL.exe that consumes
the WSDL for a Web service and then automatically generates proxy code for you.

WSDL.exe ships with the .NET Framework. You can use it to create a strongly typed proxy
for accessing the targeted Web service. Just as ASP.NET will map a large nhumber of .NET
datatypes to their XML counterparts, WSDL.exe will map XML datatypes described within
the Web service’s WSDL document to their .NET equivalents.

The functionality of WSDL.exe is integrated within Visual Studio .NET. In Chapter 1, | used
the Add Web Reference Wizard to create proxies to interact with the Payment Web service
and the WebFileShare Web service. However, the wizard is not as configurable as
WSDL.exe. Because some of the more- advanced configuration objects are usually
desirable for production applications, the Add Web Reference Wizard is typically used for
generating prototyping code.

Recall that the Securities Web service is located at
http://woodgrovebank.com/Securities.asmx. The following command will generate a proxy
for interacting with the Securities Web service:

wsdl http://woodgrovebank. com Securities. asmx?wsdl

The command will parse the WSDL document and generate Securities.cs, which contains
C# code you can compile to form a strongly typed .NET Securities proxy class that exposes
the functionality of the Securities Web service. By default, WSDL.exe will generate C# code
that targets the SOAP implementation of the W eb service interface.

Like ASP.NET Web services, WSDL.exe can create proxies only for the HTTP protocol.
However, WSDL.exe-generated proxies can use one of three bindings: SOAP, HTTP GET,
or HTTP POST. You can use optional command- line parameters to set the type of binding
as well as other configurations such as the language in which the autogenerated code will be
written. Table 6-10 lists the command-line switches that you can specify when you use
WSDL.exe to generate a proxy for a Web service.

Table 6-10: Command-Line Switches for WSDL.exe

Switch Description

Table 6-10: Command-Line Switches for WSDL.exe

Switch

Description

/nologo

Suppresses the banner containing the
version and copyright information.

/language:[CS | VB | JS] or /I:[CS | VB |
JS]

Specifies the language in which the proxy
code should be generated. The default is
CS.

[server

Generates an abstract class definition for
the Web service itself.

/namespace:[namespace] or
/n:[namespace]

Specifies the .NET namespace in which the
proxy code will reside.

/out:[filename] or /o:[filename]

Specifies the name of the file that will
contain the generated code.

/protocol:[SOAP | HttpPost | HitpGet]

Specifies the binding the generated proxy
code should target. The default is SOAP.

/username:[username] or /u:[username]
/password: [password] or /p:[password]
/domain;[domain] or /d:[domain]

Specifies the credentials that should be
passed when connecting to a Web server
that requires authentication. The supported
authentication types include Basic
Authentication and Windows NT Challenge/
Response.

/proxy: [url]

The URL of the proxy server. The default is
to use the settings defined within the
system’s Internet Options.

/proxyusername:[username] or

/pu:[username]

/proxypassword: [password] or
/pp:[password]

/proxydomain:[domain] or /pd: [domain]

Specifies the credentials that should be
used to log into the proxy server. The
supported authentication types include
Basic Authentication and Windows NT
Challenge/ Response.

lappsettingurlkey: [key] or /urlkey:[key]

Generates code that sets the Url property of
the proxy object to the value of the
application setting with the specified key in
the configuration file. If the application
setting is not found, the value will be set to
the URL that was originally targeted by
WSDL.exe.

/appsettingbaseurl:[url] or /baseurl:[url]

Generates code that sets the Url property of
the proxy object to the concatenation of the
specified URL and the value of the
application setting specified by the
/appsettingurlkey switch.

The targeted URL can also point to a DISCO file instead of a WSDL file. A DISCO file
provides a simple discovery mechanism and can reference zero or more Web services. | will

discuss DISCO files in more detail in Chapter 10.

Targeting a DISCO file provides a convenient way to create proxies for multiple Web
services. If WSDL.exe is pointed at a DISCO file, a proxy class will be generated for each
Web service referenced by the DISCO file. You can also target multiple Web services by
passing multiple URLs as arguments to WSDL.exe.

If multiple proxies are generated, the configuration parameters are applied to all generated
proxy classes, which might not be ideal for some parameters. For example,
lappsettingurlkey will cause the Url property of every property to be set to the value of the
application key. This outcome might not be desirable because in most cases each Web
service will resolve to its own unique URL.

If multiple Web services are targeted, they must each reside within their own namespace. If
the WSDL document references two schemas with the same namespace (two tempuri.org
namespaces, for example), WSDL.exe will generate a warning and create a proxy for only
one of the two schemas. To avoid this, you must change the name of one of the
namespaces to ensure that they are both unique. The same holds true for duplicate XML
Schema namespaces.

If you use WSDL.exe to generate proxy code that will be deployed to production, you should

use the following command-line parameters:

] /language The proxy code should be created using the programming language
standardized for the project.

] /Inamespace The proxy classes should reside within a namespace to prevent
collisions with other datatype definitions.

] lappsettingurlkey The target URL for the Web service should be stored in the

configuration file and not hard coded within the proxy. If the Web service is relocated,
you do not need to recompile your code.

Proxy Class

I have discussed how to generate proxy code for accessing the Calculator Web service.
Based on the suggestions | made, | will modify the command used to generate the proxy
code:

wsdl /1| anguage: CS / nanespace: BrokerageFi rm
/ appsettingurl key: SecuritiesWebServiceUrl
http://woodgrovebank. conf Securities. asnmx?wsdl

WSDL.exe will generate Securities.cs. The resulting proxy class, which will be used by a
client to access the Securities Web service, is derived from the SoapHttpClientProtocol
class. SoapHttpClientProtocol provides the implementation of the proxy. It exposes quite a
few properties and methods that control its behavior. Table 6-11 lists the properties,
methods, and events for the SoapHttpClientProtocol class in addition to those exposed by
the Object and Component classes.

Table 6-11: Selected Properties, Methods, and Events of the SoapHttpClientProtocol
Class

Property Description

AllowAutoRedirect Specifies whether the proxy will automatically follow
redirect requests sent by the server.

ClientCertificates Specifies a collection of X.509 certificates that can be
used to validate the client.

ConnectionGroupName Specifies the name of the HttpWebRequest connection

191

Table 6-11: Selected Properties, Methods, and Events of the SoapHttpClientProtocol

Class

Property

Description

group to use when connecting to the Web service. A
connection group provides a mechanism for allowing
multiple clients within the same application to share
connections open to a given Web server.

CookieContainer

Used to access the cookies maintained by the proxy. Also
provides a mechanism for setting cookies for a particular
domain.

Credentials

Specifies authentication credentials that can be used to
log into the Web server. The supported methods of
authentication include Basic Authentication, Windows NT
Challenge/Response, Kerberos, and Digest.

PreAuthenticate

Specifies whether the authentication credentials should
be sent immediately or as a result of receiving a 401
access denied error.

Proxy

Contains the information necessary to connect to the
proxy server. This includes the URL, port, and user
name/domain/password.

RequestEncoding

Specifies the type of encoding that will be used when
serializing the request message. The default is UTF-8.

Timeout Specifies the period of time, in milliseconds, that a
synchronous Web request has to complete before the
request is aborted. The default is infinity (- 1).
| Url ‘ Specifies the address of the Web service endpoint.
UserAgent Specifies the value of the user agent header in the HTTP
request.
| Method ‘ Description
Abort Used to abort any asynchronous method calls that are
currently executing.
Discover Used to dynamically discover the location of the Web
service via the DISCO file referenced by the Url property.
Event Description
Disposed Used to provide notification when the proxy has been

disposed.

Let's step through the code generated by WSDL.exe to see how the proxy class is

implemented:

/'l <aut ogener at ed>

/1 Thi s code was generated by a tool.

/1 Runti me Versi on:

1. 0. XXXX. XX

11l

/1 Changes to this file may cause incorrect behavior and will be
lost if
/1 the code is regenerated.

/'l </ aut ogener at ed>

11
/1 This source code was auto generated by WSDL, Version=1.0.XXXX. XX.
11

WSDL.exe first generates comments that document the version of the runtime as well as the
version of WSDL.exe that was used to create the proxy. If the proxy will be included within a
code base that is released to production, you might also want to record the date and time
that the WSDL was generated along with a copy of the WSDL document itself.

The date and time can be recorded by promptly checking the file into a source code

repository or by adding it as a comment to the generated file. The WSDL document can be
obtained by WSDL.exe itself. You can accomplish this by using one of the optional
command-line parameters | discuss later in this section.

namespace BrokerageFirm {
usi ng System Di agnosti cs;
usi ng System Xml . Seri alization;
usi ng System
usi ng System Web. Servi ces. Protocol s;
usi ng System Web. Servi ces;

/1] <remarks/>

[Syst em Conponent Mbdel . Desi gner Cat egor yAttri bute("code")]

[System Web. Servi ces. WebSer vi ceBi ndi ngAttri but e(Name="Securiti esSoap

Nanmespace="http://woodgrovebank. conf Securities")]

[System Xm . Serial i zati on. Soapl ncl udeAttri but e(typeof (SoapRecei pt Hea
der))]

[System Xm . Seri al i zati on. Soapl ncl udeAttri but e(typeof (SoapPaynent Hea
der))]

public class Securities : System Web. Servi ces. Protocol s.
SoapHt t pCl i ent Protocol {

publ i ¢ SoapPaynent Header SoapPaynent Header Val ue;

publ i ¢ SoapRecei pt Header SoapRecei pt Header Val ue;

The Securities class is defined within the BrokerageFirm namespace. It is derived from the
SoapHttpClientProtocol class. SoapHttpClientProtocol serves as the base class for all
ASP.NET proxies and contains the implementation necessary to communicate with most
HTTP-based Web services.

The Securities class is also decorated with three attributes. The first is the
WebServiceBinding attribute, which serves the exact same role on the client as it does on
the Web service. This attribute allows you to formally reference a particular binding defined
within another namespace. The two other attributes are Soaplnclude attributes. They tell the
XML Serializer to include the SoapPaymentHeaderValue and the SoapReceiptHeaderValue
member variables within the SOAP message.

/1l <remarks/>
public Securities() {
string url Setting =
System Confi guration. ConfigurationSettings. AppSettings
["SecuritiesWebServiceUrl"];
if ((urlSetting !'=null)) {

this. Ul = urlSetting;
}
el se {

this. Ul =

"http://1ocal host/BrokerageFirnm Securities.asnmx";
}

}

The constructor sets the object’s Url property to the value of the SecuritiesWebServiceUrl
application configuration parameter defined in the application’s configuration file. If the value
is not found, the Url property is set to the value contained within the HTTP extension
element that defines the address of the endpoint within the WSDL document’s service
definition.

You should consider modifying the else logic to throw an exception instead of defaulting to a

hard-coded value. This will make it easier to diagnose some problems within your
application. For example, when you are trying to debug your application, it would be easy to

overlook the fact that the SecuritiesWebServiceUri parameter is misspelled within your
configuration file. (Did you catch the misspelling?)

You might need to dynamically modify the Url property at run time. For example, the

application might want to reissue its request to another server in the event of failure. The Url
property is a publicly exposed read/write property, so it can be modified by the client at run

time.

You can also set the Url property to point to a DISCO file containing a reference to the
targeted Web service. You can then call the Discover method to dynamically bind to the Web
service contained within the DISCO file. | will cover DISCO files in more detail in Chapter 10.

Within the proxy class definition, methods are defined for each of the operations exposed by
the Web service. For each operation, three methods are defined. The first method definition

is for synchronously invoking the Web method, and the other two are used in combination to
invoke the Web method asynchronously. Here is the synchronous definition for the

InstantQuote method:
[System Web. Servi ces. Prot ocol s. SoapHeader Attri bute
"SoapRecei pt Header Val ue", Direction=System Wb. Servi ces.
Pr ot ocol s. SoapHeader Di recti on. Qut)]
[Syst em Web. Servi ces. Prot ocol s. SoapHeader Attri bute
(" SoapPayment Header Val ue")]
/1l <remarks/>
[Syst em Web. Servi ces. Prot ocol s. SoapRpcMet hodAttri bute

("http://woodgrovebank. conf Securities/|nstant Quote",
Request Nanespace="htt p: // woodgr ovebank. com Securities",
ResponseNanespace="htt p://woodgr ovebank. com Securities")]
public System Doubl e | nstant Quote(string synbol,
CurrencyType targetCurrency) {

object[] results =

this.Invoke("lnstantQote", new object[] {

synmbol , targetCurrency});

return ((System Double)(results[0]));

}

The InstantQuote method is decorated with the SoapHeader, DebuggerStepThrough, and
SoapRpcMethod attributes. The DebuggerStepThrough attribute is used by the Visual Studio
.NET debugger. The Visual Studio .NET debugger will not stop within the method marked
with this attribute.

The SoapHeader and SoapRpcMethod attributes serve the same purpose as they do when
applied to a Web method. The SoapHeader attribute indicates which member variable

should be serialized into the header of the SOAP message. The SoapRpcMethod attribute
indicates the encoding style and the format of the message as well as the value of the SOAP
HTTPAction header.

The signature of the method itself is composed of .NET types that match their XML
counterparts described within the types section of the WSDL document. This wrapper
method definition allows code written against the proxy to take full advantage of the features
provided by the .NET platform. For example, if a client attempts to pass invalid parameters,
such as passing two strings to the Add method instead of two integers, the compiler will
generate errors at compile time. Developers using Visual Studio .NET will also have full
IntelliSense capabilities when they write code against the proxy.

The implementation of the InstantQuote method packages the parameters into an array of
objects and calls the Invoke method. Because this method is publicly exposed, you can call
it directly. However, using the method exposed by the WSDL.exe-generated proxy provides
a more convenient and natural calling convention.

In many circumstances, making a synchronous call to a Web method is not ideal. This is
especially true for Web services accessed via the Internet, where quality and speed of the
connection might be uncertain. This might also be true for Web services hosted within the
walls of a corporate data center. For example, a Web service might be used to expose data

contained within a mainframe. A significant amount of initialization might need to be done to
set up a connection to the mainframe, or the Web service might be accessed during times of

peak load.

The next two methods defined for the InstantQuote operation are BeginlnstantQuote and
EndInstantQuote. These methods are used to make an asynchronous call to the Securities
Web service’s InstantQuote Web method:

/1l <remarks/>
public System | AsyncResult Begi nlnstant Quote(string symnbol,
CurrencyType targetCurrency, System AsyncCall back call back,
obj ect asyncState) {

return this.Beginlnvoke("lnstant Quote",

new obj ect[] {symnbol, targetCurrency},

cal | back, asyncState);

1l <remarks/>
publ i c System Doubl e Endl nst ant Quot e(System | AsyncResul t
asyncResul t) {
object[] results = this. Endl nvoke(asyncResult);
return ((System Double)(results[0]));

}

By convention, the method used to invoke the asynchronous call is prefixed with Begin and
the method used to retrieve the parameters returned by the Web service is prefixed with
End. The implementation invok es the Begininvokeand Endinvoke methods, respectively.

The asynchronous methods are not decorated with attributes used to describe the formatting

of the message. The methodName parameter contains the name of the method that the
ASP.NET runtime will use toretrieve the formatting information. If the asynchronous
message is decorated with any attributes such as SoapDocumentMethod, these attributes

will be ignored.
[System Xml . Seri alization. SoapTypeAttri bute(" SoapRecei pt Header",

"http://woodgrovebank. cont’ Securities/encodedTypes")]
public class SoapRecei pt Header : SoapHeader {
publ i c System Doubl e Amount;
public int ReferenceNunber;
[System Xml . Seri al i zati on. SoapTypeAttri bute(" SoapPaynent Header",

"http://woodgrovebank. con’ Securities/encodedTypes")]
public class SoapPaynent Header : SoapHeader {

public string NameOnCard;

public string CreditCardNunber;

public CardType CreditCardType;

public System DateTi nme ExpirationDat e;

[System Xml . Seri al i zati on. SoapTypeAttri bute(" CardType",

"http://woodgrovebank. con’ Securities/encodedTypes")]

public enum CardType {

VI SA,

NC:

AMX,

DI SCOVER,

[System Xml . Serialization. SoapTypeAttri bute("CurrencyType",

"http://woodgrovebank. con’ Securities/encodedTypes")]
public enum CurrencyType {

US_DOLLARS,

UK_POUNDS,

GE_DEUTSCHVMARKS,

}

Lastly WSDL.exe defines .NET counterparts to the Payment and Receipt SOAP headers as
well as the CurrencyType and CardType enumerations. WSDL.exe uses the SoapType
attribute to explicitly define type information used by the XML Serializer to map the .NET
types to their XML Schema counterparts.

The use of the proxy to make a synchronous method call is fairly trivial. The following
example writes the price of a security passed as a command-ine argument out to the
console:

usi ng System
usi ng BrokerageFirm

class Application
{
public void Main(string[] args)
{
string synbol = args[O0];
Securities securities = new Securities();

/'l Create and initialize the Paynent header.

SoapPaynment Header paynent Header = new SoapPayment Header () ;
payment Header . Credi t Car dNunber = "12345";

paynment Header . Expi rati onDat e = Dat eTi ne. Today;

payment Header . Credi t CardType = CardType. VI SA;

securities. SoapPaynent Header Val ue = paynent Header ;

Consol e. WitelLine("{0} = {1}", synbol,
securities.|nstantQote(synbol, CurrencyType.US_DOLLARS));

}

Because the Payment header is required to be passed to the InstantQuote method, | create
a new SoapPaymentHeader object. Then | initialize it and set it to the
SoapPaymentHeaderValue property on the securities object. The proxy is responsible for
serializing the SoapPaymentHeader object within the header of the SOAP request message.

Invoking the InstantQuote Web method asynchronously involves a little more work. The

following code is contained within a WinForm application. Let's walk through an example. |
will write a console application that uses the Securities Web service proxy to make an
asynchronous method call:

usi ng System
usi ng System Web. Servi ces. Prot ocol s;

usi ng BrokerageFirm

namespace SecuritiesCient
{
cl ass Application
{
static Securities securities = new Securities();
First | create a class that will contain the console application. Then | create a static instance

of the Securities Web service proxy as a static member of the class. | do this because the
static callback function that | will now define will need to access the proxy object:

static void Main(string[] args)

{
string synbol = args[O0];

SoapPaynent Header paynent Header = new
SoapPaynent Header () ;

paynment Header . Credi t Car dNunmber = "12345";
paynent Header . Expi rat i onDat e Dat eTi me. Today;
paynment Header. Credi t CardType = CardType. VI SA;

securities. SoapPaynent Header Val ue = paynent Header ;

securities. Beginl nstant Quot e(synbol ,
CurrencyType. US_DOLLARS,
new AsyncCal | back(| nst ant Quot eCal | back), synbol);

Syst em Thr eadi ng. Thr ead. Sl eep(30000) ;
Consol e. WiteLine("Term nating application.");

}

As you have learned, WSDL.exe will properly handle generating proxies for Web services
that support headers. The generated proxy code will contain a class declaration for each
header defined by the Web service. Depending on the direction of the header, instances of
the header class can be either retrieved or set using an associated property defined by the
proxy class for the Web service. By default, the property will have the same name as the
class, with a prefix of Value. If the class declaration contains an XmlIType attribute
(discussed in Chapter 7), the property on the client will simply be the name given to the XML

type.

The proxy class will also perform client-side validation of the SOAP headers before sending
the message to the server. For example, the proxy will throw a SoapException if
SoapPaymentHeaderValue was set to null when the Web method was invoked.

Within the Main function, a call is made to the BegininstantQuote method. This method
accepts two parameters in addition to the securities symbol and the target currency of the
quote. | also pass an instance of the AsyncCallback delegate that serves as a reference to
the InstantQuoteCallback method | will define shortly. This tells the Web service proxy to
execute the InstantQuoteCallback method once the Web service returns. If there is no
callback method that should be invoked, you can pass null for the value of the parameter.

The fourth parameter is intended to pass state that should be associated with the method
once the callback has been invoked. The parameter is of type object and therefore accepts

an instance of any .NET type. In this case, | pass the symbol of the security for which | have
requested the quote.

public static void |InstantQuoteCallback(lAsyncResult result)

{
/] Qbtain the results.

doubl e price = securities. Endl nstant Quote(result);

/1 Cbtain the additional state that was sent by
/'l the call to BeginCall back.

WebCl i ent AsyncResult webResult =
(WebCl i ent AsyncResul t)resul t;

string synmbol = (string)webResult.AsyncStat e;

/1 Display the results within a nessage box.
Consol e. WiteLine("{0} = {1}", synbol, price);

}

The InstantQuoteCallback method receives a reference to the IAsyncResult interface of an
object of type WebClientAsyncResult. This parameter is then passed to the EndAdd method
to obtain the return value of the Web method call. Next | obtain the additional state
information from the AsyncState property—in this case, the symbol passed to the Add
method. Finally the price of the security is written to the console.

Cookies

Proxies derived from SoapHttpClientProtocol fully support HTTP cookies. However, the
proxies have cookies disabled by default. To enable cookie support, you must set the
CookieContainer property on the proxy object to reference an instance of a CookieContainer
object.

Earlier in the chapter, | leveraged session state to configure the target currency. The client
first sets the target currency by calling SetCurrency. Then the client calls InstantQuote to
obtain the price of the security. Because the Web service relies on cookies to maintain
session state, clients using this Web service need to explicitly enable cookies. The following
code demonstrates how to enable session state:

usi ng System
usi ng BrokerageFirm

usi ng System Net;

class Application

{
public void Main(string[] args)
{
string synbol = args[O0];
Securities securities = new Securities();

/'l Enabl e session state by creating a new cooki e container.

securities. Cooki eCont ai ner = new Cooki eCont ai ner();

/'l Receive a quote on the requested security in UK pounds.
securities. SetCurrency(CurrencyType. UK_POUNDS) ;

Consol e. WiteLine("{0} = {1}", synbol,
securities.|nstantQote(synbol));

}

Once the proxy object has gone out of scope, all cookie information will be invalid. This is
perfectly acceptable in the above console application. However, this might not be ideal if you

need to maintain the cookie information across instances of the proxy. In such cases, it is
necessary to persist the cookie collection and associate it to the new proxy object.

Summary

ASP.NET provides a robust, feature-rich platform for easily creating and consuming Web
services. For a V1 product, it is remarkably feature complete.

An ASP.NET Web service is represented by an .asmx file hosted within an IIS Web
application. The implementation of the Web service can be contained within the .asmx file or
within a compiled DLL. If the code appears inline within the .asmx file, the ASP.NET runtime
will automatically compile it the first time it is accessed.

A Web service is defined by a standard public class declaration. Public methods defined
within the class can be exposed by the Web service if you decorate the method with the
WebMethod attribute. This attribute exposes properties that can be optionally set to control
the behavior of the ASP.NET runtime. The class can also be decorated with the WebService
attribute.

All ASP.NET Web services expose a SOAP interface over HTTP. Depending on the
complexity of the Web service's interface, an ASP.NET Web service might also support
HTTP GET and HTTP POST. The ASP.NET runtime will automatically map data contained
within requests from the client and their corresponding responses to their corresponding
.NET datatypes.

The ASP.NET platform will automatically generate documentation for the Web service. A
human-readable HTML version of the documentation can be obtained by calling the .asmx
file with no parameters. A programmatic WSDL version of the documentation can be
obtained by appending &wsdl to the URL that addresses the .asmx file.

ASP.NET supports two distinct encoding styles, Document and RPC. Document is the
default and is used primarily for document-based message exchanges between the client
and the server. RPC is used primarily for procedure-based communication between the
client and the server. You can select RPC by using the SoapRpcService or SoapRpcMethod
attribute.

You should be careful when you pass value types as parameters because the ASP.NET
platform has some inconsistencies when identity is maintained. The identities of built-in
value types such as int and double are never maintained, even when passed by reference.
The identity of a custom value type when passed by reference is maintained when the
encoding style is set to RPC. However, the identity of custom value types passed by value is
improperly maintained when the encoding style is set to RPC.

Regardless of the style of encoding, SOAP formally defines how errors returned to the client
should be encoded within a SOAP message. The ASP.NET runtime will automatically map

.NET exceptions into a well-formed SOAP Fault element. You can also formally raise a fault
by throwing an exception of type SoapException.

You can facilitate interface inheritance by referencing a port type or a binding definition from
an external namespace. Of the two, ASP.NET supports referencing transport-specific
binding definitions. You first reference the remote binding definition with the
WebServiceBinding attribute, and then you associate the reference to the binding with a
particular Web method via the Binding property of the SoapRpcMethod or
SoapDocumentMethod attribute.

ASP.NET also provides a fairly robust state management system. It supports three
configurations: In Process, Out of Process, and SQL Server. Of the three, In Process is the
most performant configuration. You should consider Out of Process and SQL Server only if
the Web service will be deployed on a Web farm. Regardless of which model you use, the
programming model is exactly the same.

The ASP.NET platform also has good support for defining and consuming SOAP headers. A

SOAP header is defined by deriving from the SoapHeader class. You then use the
SoapHeader attribute to associate the header with a particular Web method. ASP.NET

automatically deserializes any headers received from the client and serializes any headers
sent from the Web server.

Finally, the ASP.NET framework provides an interception mechanism called SOAP

extensions. The SOAP extensions framework lets you examine and, if necessary, modify the
contents of the SOAP messages exchanged between the client and the server.

I didn’t cover a couple of key topics related to ASP.NET Web services because they deserve
chapters of their own. In Chapter 7, | will discuss how to control how individual parameters
passed by a Web service or its client are encoded within a SOAP message. In Chapter 9, |
will also cover the security services provided by ASP.NET.

Chapter 7: XML Serialization

Overview

The ASP.NET runtime is built on top of a technology called XML serialization. XML

serialization is responsible for serializing instances of .NET types to XML and deserializing
XML to instances of .NET types. XML serialization is also responsible for serializing .NET
type definitions to XML schemas and deserializing XML schemas to .NET type definitions.

Sometimes, this default behavior might not entirely meet your needs. For example, public
properties and fields will be serialized into elements within the resulting XML document, but
many existing and emerging Web services interfaces such as UDDI and .NET My Services
expose interfaces that use attributes. Therefore, you need a means of controlling how .NET
types and instances of .NET types are serialized into XML.

Consider the following SOAP message, which submits a purchase order:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ "

xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schenma-i nstance"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schem" >
<soap: Body>
<Pur chaseOrder xsi:type="Comrent edPurchaseCOrder”
xm ns="http://tenpuri.org/">
<Bi | I i ngAddr ess>
<Nanme account Nunber ="12345">ABC Conpany</ Nane>
<Street>123 Sone Street</Street>
<City>Some Town</City>
<St at e>CO</ St at e>
<Zi pCode>80427</ Zi pCode>
</BillingAddress>
<Shi ppi ngAddr ess>
<Nanme account Nunber ="12345">ABC Conpany</ Nane>
<Street>123 Sone Street</Street>
<City>Some Town</City>
<St at e>CO</ St at e>
<Zi pCode>80427</ Zi pCode>
</ Shi ppi ngAddr ess>
<l tenms>
<l tem part Nunber =" A1467" >
<Quantity>2</ Quantity>
<Price>23.5</Price>
<Currency>US_DOLLAR</ Currency>
</ltempr

<l tem part Nunber =" C2963" >
<Quanti ty>20</ Quantity>
<Price>10. 95</ Pri ce>
<Currency>US_DOLLAR</ Currency>
</ltempr
<l tem part Nunber =" F4980" >
<Quantity>3</ Quantity>
<Price>82. 65</ Price>
<Currency>US_DOLLAR</ Currency>
</ltempr
</ltens>
<Comrent s>Pl ease do not ship a partial order.</Conments>
</ Pur chaseOr der >
</ soap: Body>
</ soap: Envel ope>

The message contains a mixture of elements and attributes. For example, the part number
for each item listed in the purchase order is serialized within the partNumber attribute of
each Item element. The Name element within the billing and shipping addresses contains
the name of the company as well as an attribute that contains the company’s account
number.

Controlling XML Serialization

For situations in which the default serialization support is not adequate, XML serialization
provides mechanisms for altering the way .NET types are serialized to XML. You do this
mostly by using the attributes defined in the System.Xml.Serialization namespace, which
Table 7-1 describes.

Table 7-1: XML Serialization Attributes

Attribute Description
XmlAnyAttribute Creates an “open” XML datatype in which any attribute can be
added to its root node
XmlIAnyElement Creates an “open” XML datatype where any element can be
included as a child element
| XmlArray | Controls how the root node of an array is serialized
| XmlArrayltem | Controls how an item of an array is serialized
XmlAttribute Indicates that a public field, property, or parameter should be
serialized as an attribute
XmIElement Controls how a public field, property, or parameter is serialized as
an element
XmIEnum Controls how an enumeration is serialized

Xmlignore Indicates that XML serialization should not serialize the

Table 7-1: XML Serialization Attributes

| Attribute | Description
| | member
Xmlinclude Tells XML serialization to include a particular datatype definition of
a class that derives from a base class exposed by a Web service’s
interface
| XmIRoot | Identifies a type as the root of an XML document
XmiText Specifies that the member variable be serialized as the content of
the parent element
XmlIType Maps an XML type to a particular class, structure, enumeration, or
interface declaration

You can use the XML serialization attributes only with literal, document- oriented SOAP
messages. For example, the attributes will be ignored if the Web method is decorated with
the SoapRpcMethod attribute or is decorated with the SoapDocumentMethod attribute and
has the Use property set to SoapBinding-Use.Encoded.

The attributes listed in the table control how XML serialization represents .NET types in
XML. For Web services, the attributes control how instances of.NET types are encoded into
the body of a SOAP message. They also control how .NET types are represented as XML
datatypes in the WSDL document that describes the Web service.

In this chapter, | use the preceding attributes to create the PurchaseOrder .NET type, which

can be used to define how a purchase order is serialized in the body of a SOAP message. |
also create the AcceptPO Web method. This Web method is used to receive purchase

orders similar to the one in the previous example.

Defining the Root PurchaseOrder Datatype

The first step is to define the PurchaseOrder class, which will represent the root element
within the body of the SOAP message. Recall from Chapter 4 that you can set elements to
null by setting the xsi:nil attribute to true. For the SOAP message to be valid, it must not
contain a null reference to the purchase order.

The following code defines the PurchaseOrder class:
[Xm Root (1 sNul I abl e=f al se)]
public class PurchaseOr der

{

/1 Additional type definitions...

}

To define the PurchaseOrder XML datatype, | need to define a public class by the same
name. | also need to ensure that the PurchaseOrder element cannot contain a null value. |
can do this by decorating the class with the XmIRoot attribute.

One of the properties exposed by the XmIRoot attribute is IsNullable. This property indicates
whether the schema generated by XML serialization will permit instance documents to

contain a PurchaseOrder element with a null value.

You can also use the XmlIRoot attribute to control the behavior of XML serialization. Table 7-
2 describes the properties exposed by the XmIRoot attribute.

Table 7-2: XmIRootAttribute Properties

| Property | Description

| DataType | Specifies the XML datatype in which the class should be encoded.
| ElementName | Specifies the name of the root XML element.
Form Specifies whether the XML element must be namespace

qualified. It is set to one of three values defined by the

XmlISchemaForm enumeration: None, Qualified, or Unqualified.

IsNullable Specifies whether the value of the XML element can be set to xsd:nil.
Namespace Specifies the XML namespace in which the root element is
qualified.

Most of the elements within the PurchaseOrder document contain attributes or child

elements themselves. For example, the BillingAddress and ShippingAddress elements each
contain Name, Street, City, State, and ZipCode child elements, as shown here:

<Pur chaseOr der >

<Bi | I i ngAddr ess>
<Nanme account Number ="12345">ABC Conpany</ Nane>
<Street>123 Sone Street</Street>
<City>Some Town</City>
<St at e>CO</ St at e>
<Zi pCode>80427</ Zi pCode>

</ Bi |l i ngAddress>

<Shi ppi ngAddr ess>
<Nanme account Nunber ="12345">ABC Conpany</ Nane>
<Street>123 Sone Street</Street>
<City>Some Town</City>
<St at e>CO</ St at e>
<Zi pCode>80427</ Zi pCode>

</ Shi ppi ngAddr ess>

<l-- Additional type definitions... -->

</ Pur chaseOr der >

You can model complex structures such as the preceding one using a class hierarchy. The
following example defines an Address class and then defines two fields within the

PurchaseOrder class, BillingAddress and ShippingAddress. Both fields are defined as type
Address.

[Xm Root (1 sNul | abl e=f al se)]
public class PurchaseOr der

{
[Xm El emrent (1 sNul | abl e=true, DataType="normalizedString")]
public string Conments;
[Xml El enent (1 sNul | abl e=f al se)]
publ i c Address BillingAddress;
[Xml El enent (1 sNul | abl e=f al se)]
publ i c Address Shi ppi ngAddress;
/1 Additional type definitions...
}

public class Address

{
publ i ¢ ConpanyName Nane;
public string Street;
public string City;
public string State;
public string Zi pCode;

}

The preceding code uses the XmlIElement attribute to control how properties and fields are
serialized as elements within the resulting XML document. For example, the Comments field
can contain a null value, but neither the ShippingAddress field nor the BillingAddress field
can be set to null. Like the XmIRoot attribute, the XmIElement attribute exposes an
IsNullable property.

The Comments element can be set to null because XML serialization does not allow you to
specify that a particular element or attribute be able to optionally occur within a document.
This is because the XmlElement attribute does not provide a means of explicitly setting the
minOccurs and maxOccurs constraints on an element. | discuss another potential
workaround for this situation later in the chapter.

The Comments element contained within the PurchaseOrder document contains text related
to the order. In addition to setting the XmlElement attribute’s IsNullable property, the

preceding code sets the DataType property for the Comments field.

XML serialization provides a default mapping between .NET types and the builtin datatypes
defined by XML Schema. For example, the Comments property is defined as type String. By

default, XML serialization will transform the String type to the XML built-in datatype string.

Suppose the back-end system that will record the receipt of the purchase order does not
accept linefeeds or tabs. In order to communicate this to the client, | set the datatype of the
Comments element to normalizedString. By definition, normalizedString cannot contain
linefeeds or tabs.

XML serialization supports all XML built-in datatypes. Table 7-3 lists the supported mappings
between XML datatypes and .NET types.

Table 7-3: Mapping Between XML Datatypes and .NET Types

‘ XML Datatype ‘ .NET Type

‘ XML Datatype

‘ NET Type

|anyUri ‘ String | IDREFS ‘ String
|base64Binary ‘ Byte (array) | Int ‘ Int32
| boolean ‘ Boolean | language ‘ String
| byte ‘ SByte | long ‘ Int64
| CDATA ‘ String | Name ‘ String
|date ‘ DateTime | NCName ‘ String
|dateTime ‘ DateTime | negativelnteger ‘ String
|decimal ‘ Decimal | NMTOKEN ‘ String
|double ‘ Double | NMTOKENS ‘ String
| duration ‘ String | nonNegativelnteger ‘ String
| ENTITY ‘ String | nonPositivelnteger ‘ String
| ENTITIES ‘ String | normalizedString ‘ String
|f|oat ‘ Single | NOTATION ‘ String
| gDay ‘ String | positivelnteger ‘ String
|gMonth ‘ String | QName ‘ XmlQualifiedName
| gMonthDay ‘ String | string ‘ String
|gYear ‘ String |short ‘ Int16
|gYearMonth ‘ String |time ‘ DateTime
| hexBinary ‘ Byte (array) |token ‘ String
| ID ‘ String | unsignedByte ‘ Byte

| IDREF ‘ String |unsigned|nt ‘ Uint32

Even though XML serialization will transform an XML datatype into its corresponding .NET
type, it will not perform any validation on the data. For example, the XML datatype integer
maps to the String .NET type, but the client can pass non-numeric data to the Web service.
Therefore, it is up to the Web service to enforce additional constraints over and above what

is provided by the .NET type.

The XmlElement attribute exposes additional properties that you can use to control how a
.NET type is serialized to XML. Table 74 describes these properties.

Table 7-4: XmlElementAttribute Properties

Property Description

DataType Specifies the XML Schema built-in datatype in which the property
or field should be encoded.

ElementName Specifies the name of the XML element.

Form Specifies whether the XML element must be hamespace qualified.

It is set to one of three values defined by the XmISchemaForm
enumeration: None, Qualified, or Unqualified.

IsNullable Specifies whether the value of the XML element can have its xsi:nil
attribute set to true.

Namespace Specifies the XML namespace in which the element is defined.

Type Specifies the .NET type that should be used to generate the

schema that describes the element.

You can decorate a property or a field with more than one XmlElement attribute. Doing so
specifies that an instance document must contain an element that complies with the criteria
specified by one of the XmlElement attributes. Here is an example:

public class Person

{
[Xml El enrent (" Soci al SecurityNumber™)]
[Xm El ement ("Dri versLi censeNunber ")]
public string ldentifier;
public string Nane;

}

The preceding .NET type definition creates the following XML datatype definition:
<s: conpl exType nanme="Person">
<s:sequence>
<s:choice nmi nCccurs="1" maxCccurs="1">

<s:element mnOccurs="1" nmaxCOccurs="1"
name="Dri versLi censeNunber"

type="s:string" />

<s:element m nOccurs="1" maxCOccurs="1"
nanme="Soci al SecurityNunber"

type="s:string" />
</ s: choi ce>

<s:elenment m nQccurs="1" maxQOccurs="1" nanme="Nane"
nillabl e="true"

type="s:string" />

</ s: sequence>

</ s:conpl exType>

An instance of the Person XML datatype must contain the person’s name as well as the
person’s driver’s license number or social security number.

You can use the XmIType attribute to control how .NET types are serialized to an XML

datatype, and you can apply the attribute to a variety of .NET type definitions, including

classes, structures, enumerations, and interface definitions. You can use the XmIType

attribute to set the name of the resulting XML datatype and the namespace in which the
datatype is defined. You can also use it to specify whether a datatype definition will be

generated within the Web service’s WSDL document.

Table 7-5 describes the properties exposed by the XmIType attribute to control how XML
datatypes are generated.

Table 7-5: XmITypeAttribute Properties

Property Description

IncludelnSchema Specifies whether the type will be included in the schema

Namespace Specifies the XML namespace in which the XML schema datatype is
qualified

TypeName Specifies the name of the XML datatype that describes the targeted
.NET type

You can also use the Xmlignore attribute to exclude entities from type definitions. For
example, suppose the internal implementation of the AcceptPO Web service needs to track

a processing code. The following class definition adds a ProcessingCode public field to the
class for maintaining the state of this information:

[Xm Root (1 sNul | abl e=f al se)]
public class PurchaseOrder

{
[Xm El ement (1 sNul | abl e=true, DataType="nornalizedString")]
public string Comrents;

[Xm El erent (I sNul | abl e=f al se)]
publ i c Address BillingAddress;

[Xm El ement (1 sNul | abl e=f al se)]
publ i c Address Shi ppi ngAddress;

[Xm I gnor e]
public int ProcessingCode;

/1 Additional type definitions...

The ProcessingCode field is declared as public because it needs to be accessed by the
internal implementation of the AcceptPO Web service. However, because the field should
not be exposed to the client, it is decorated with the Xmlignore attribute.

There is another use for the Xmlignore attribute. Suppose it is important to know whether the
Comments element is set to null or simply contains an empty string. Because the underlying
.NET type is a value type, you will not be able to directly test for null.

To discover whether the element contains a null value, you can create a property that will be

set by XML serialization. You can define a Boolean public field with the prefix Specified. This
field will be set to true if the associated XML element contains a null value. The following

code provides an example:
[Xm Root (1 sNul | abl e=f al se)]
public class PurchaseOrder

{
[Xm I gnor €]
public bool ConmentsSpecified;
[Xm El ement (1 sNul | abl e=true, DataType="nornalizedString")]
public string Comrents;
/1 Additional type definitions...
}

This example extends the PurchaseOrder class definition by adding the CommentsSpecified
public field. This field will be set by XML serialization and therefore should not be exposed
within the PurchaseOrder type definition. Therefore, | decorated the CommentsSpecified
field with the Xmlignore attribute to ensure that the ASP.NET runtime will not include the
field in the auto-generated WSDL document.

Defining the Iltems Array

The next step is to define the array of items contained within a purchase order. The following
code defines the type that will represent an individual item within the purchase order. Recall
that the individual Iltem elements within the Items array contain a combination of elements
and attributes.

<l tem part Nunber =" A1467" >
<Price>23. 5</Price>
<Quantity>2</Quantity>
</ltenp

By default, public read/writable properties defined within a .NET type are serialized as XML
elements. The XmlAttribute attribute is used to indicate that a property or a field should be
serialized as an attribute instead of as an element. The following code defines the
partNumber attribute for the Item element definition:

public class PurchaseOrderltem

{
[Xml Attribute("partNunber")]

public string Par t Nunber ;
public int Quantity;
publi c doubl e Price;
public CurrencyType Currency;

}

By convention, | use camel case when naming the partNumber attribute. In camel case, the

first word that composes the entity name is all lowercase and the first letter of each
subsequent word is capitalized. But the standard convention for public properties and fields

exposed by a .NET type is Pascal case, in which the first letter of each word making up the
entity name is uppercase.

By default, the name of the attribute in the serialized XML document is the name of the

property or field. Because the name of the field does not match the name of the attribute, |
pass the intended name of the attribute to the constructor for the XmlAttribute attribute. The

value of the Name property is set to the string passed to the constructor.

The XmlAttribute attribute exposes additional properties that you can use to control how
XML serialization serializes the associated property or field to an attribute. These properties
are described in Table 7-6.

Table 7-6: XmlAttributeAttribute Properties

| Property ‘ Description

|AttributeName ‘ Specifies the name of the XML attribute.

DataType Specifies the XML Schema built-in datatype in which the property or
field should be encoded.

Form Specifies whether the XML attribute must be namespace qualified. It is
set to one of three values defined by the XmISchemaForm
enumeration: None, Qualified, or Unqualified.

Namespace Specifies the XML namespace in which the attribute is defined.

The Currency element is of type CurrencyType. CurrencyType is an enumeration containing
the valid currency types supported by the AcceptPO Web method. You can use the
XmIEnum attribute to alter the name of an element typed to a particular enumeration. As an
illustration, the following code uses the XmIEnum attribute to rename the public field for
describing the currency that was used to price the item:

public class PurchaseOrderltem

{
[Xml Attribute("partNunber")]
public string Part Nunber ;
public int Quantity;
public doubl e Price;

[Xm Enunm(" Currency")]
public CurrencyType TypeOf Currency;

The following code adds an array of Item elements to the PurchaseOrder class. Two
attributes can be used to control how an array is serialized to XML: XmlArray and

XmlArrayltems. Here is the PurchaseOrder class definition:
[Xm Root (1 sNul | abl e=f al se)]
public class PurchaseOr der
{
[Xm El enent (1 sNul | abl e=f al se)]
public Address BillingAddress;

[Xm El enent (I sNul | abl e=f al se)]
public Address Shi ppi ngAddress;

[Xm Array("ltenms", |sNullable=false)]
[Xm Arrayltem("Itend, 1sNullable=false)]
public PurchaseOrderitem|[] Itens;

/1 Additional type definitions...

}

The XmlArray attribute is used to control how the root element of the array is serialized.

Because the purchase order is valid only if the array of Item elements is not null, the
IsNullable property is set to false in the preceding code.

The XmlArrayltem attribute is used to control how each item within the array is serialized.
Because none of the items within the array can be set to null, the IsNullable property of the
XmlArrayltem attribute is set to false in the preceding code.

In XML serialization, by default each element within the array has the same name as the

type definition. In this example, the type definition name is PurchaseOrderitem. Because the
name of the elements within the Items array should be named Item, | explicitly set the name
of the element.

You can also use the XmlArrayltem attribute to define arrays containing instances of a
mixture of datatypes. You can do this by decorating an array with multiple XmlArrayltem
attributes. The following code defines an array that can contain items of type string and int:

[Xm Arrayltem("Mylnt", typeof(int))]
[Xm Arrayltem("MString", typeof(string))]
public object [] TestArray;

The preceding code will generate the following XML datatype definition:

<el ement m nCccurs="1" maxQccurs="1" name="Test Array"
nillable="true"

type="s0: ArrayCf Choi cel" />

<conpl exType nane="ArrayO Choi cel" >
<sequence>

<choi ce m nCccurs="0" maxOccur s="unbounded" >
<el ement mi nGCccurs="1" maxOccurs="1" name="Mlnt" type="int"
/>
<el ement m nCccurs="1" maxOccurs="1" nanme="MyStri ng"
type="string" />
</ choi ce>
</ sequence>

</ conpl exType>

Notice that the TestArray element can contain any combination of child elements of type
string and int. To accept data of different types from the client, the XML mixed array is
mapped to a .NET array of type Object. The compiler will not throw an error if the .NET type
is set to something other than Object— say, Boolean. However, the client will receive a run-

time error if the client sends an instance of an XML datatype that cannot be transformed into
the underlying .NET type.

The XmlArray and XmlArrayltems attributes expose additional properties that you can use to
control how an array is serialized to XML. Tables 7-7 and 7-8 describe these properties.

Table 7-7: XmlArrayAttribute Properties

| Property | Description

| ElementName | Specifies the name of the XML element.
Form Specifies whether the XML element must be namespace qualified. It

is set to one of three values defined by the XmISchemaForm
enumeration: None, Qualified, or Unqualified.

IsNullable Specifies whether the value of the XML element can have its xsi:nil
attribute set to true.

| Namespace | Specifies the XML namespace in which the element is defined.

Table 7-8: XmlArrayltemAttribute Properties

| Property | Description

DataType Specifies the XML Schema built-in datatype in which the property or
field should be encoded.
| ElementName | Specifies the name of the XML element.
Form Specifies whether the XML element must be namespace qualified. It

is set to one of three values defined by the XmISchemaForm
enumeration: None, Qualified, or Unqualified.

IsNullable Specifies whether the value of the XML element can have its xsi:nil
attribute set to true.

Namespace Specifies the XML namespace in which the element is defined.

Type Specifies the .NET type that should be used to generate the schema

that describes the element.

As | mentioned earlier, the default behavior of XML serialization is to serialize an array as a
root element, where each item is contained within a child element. However, sometimes it
might be necessary to specify a collection of content that is not wrapped by a root element.

24

You can specify that each element of an array not be wrapped within a parent element by
decorating the array with the XmlElement attribute. The following example creates the

BaseballTeam type, which contains one CoachName child element and any number of
PlayerName child elements:

public cl ass Basebal | Team

{
public string CoachNane;
[Xm El enent (" Pl ayer Name")]
public string [] Players;
}

The preceding .NET type definition creates the following XML datatype definition:
<conpl exType nane="Basebal | Teant >
<sequence>

<el ement m nCccurs="1" maxOccurs="1" nane=" Coach"
nillabl e="true"

type="s:string" />
<el ement m nCccurs="0" maxOccur s="unbounded" nane="Pl ayer Nanme"
type="s:string" />
</ sequence>
</ conpl exType>

You can also decorate an array with multiple XmIElement attributes. Doing so specifies that
an instance document can contain any combination and any number of elements defined by
the XmlIElement attributes. The following example defines a BaseballTeam XML datatype
that contains one CoachName element and any combination of PlayerName and
PlayerNumber elements:

public cl ass Basebal | Team

{
public string Coach;
[Xm El enent (" Pl ayer Nane", typeof(string))]
[Xml El ement (" Pl ayer Nunber ", typeof(int))]
public string [] Players;

}

The preceding .NET type definition creates the following XML datatype definition:
<conpl exType nane="Basebal | Teant >
<sequence>

<el ement mi nGOccurs="1" nmaxQccurs="1" nane="Coach"
nillabl e="true"

type="s:string" />
<choice m nCccurs="0" maxCccurs="unbounded" >

<el ement mi nCccurs="1" maxCccurs="1" nane="Pl ayer Nane"
type="s:string" />

<el ement m nCccurs="1" maxOccurs="1" nane="Pl ayer Nunber"
type="s:int" />

</ choi ce>
</ sequence>

</ conpl exType>

Creating Derived Datatypes

XML serialization supports defining XML datatypes that are derived by extension from other

XML datatypes. You can define a derived XML datatype by creating a derived .NET type and
then decorating the base type with the Xmlinclude attribute.

The following example defines a base type called Tire and creates two derived types called

AutoTire and MountainBikeTire. The XmlInclude attribute is also used to notify XML
serialization of these two derived types.

[Xm I ncl ude(typeof (AutoTire))]
[Xm I ncl ude(typeof (Mount ai nBi keTire))]
public class Tire
{
public int Weel D aneter;
public int Wdth;

public class AutoTire : Tire

{
public AspectRati o;

public class MuntainBi keTire : Tire

{

public TireLocati onType Position;

public enum TireLocationType
{

FRONT,

REAR

}

The preceding code will generate an XML datatype called Tire and two datatypes that derive
by extension from Tire: AutoTire and MountainBikeTire. Because AutoTire and
MountainBikeTire are extended versions of the Tire datatype, Web service interfaces that
accept the Tire datatype can also accept instances of AutoTire and MountainBikeTire.

Recall that | want to specify that the Comments element within the PurchaseOrder document
be optional. Also recall that you cannot specify optional parameters for a Web service by

explicitly setting the minOccurs restriction on the element declaration to 0. One potential
workaround uses derived types and the Xmlinclude attribute.

The following code creates a type that is derived from PurchaseOrder. The new type
contains the optional Comments element.

[Xm Root (" PurchaseOrder™, |sNullable=false)]
[Xm I ncl ude(typeof (Comrent edPur chaseOrder))]
public class PurchaseOr der
{

[Xml El enent (1 sNul | abl e=f al se)]

public Address BillingAddress;

[Xml El enent (1 sNul | abl e=f al se)]
publ i c Address Shi ppi ngAddress;

[Xm Array("ltenms", IsNullable=false)]
[Xm Arrayltem("Itent, 1sNullabl e=false)]
public PurchaseOrderlitem[] Itens;

/1 Additional type definitions...

public class Conment edPurchaseOrder : PurchaseOrder

{
[Xm El enent (1 sNul | abl e=true, DataType="normalizedString")]
public string Conments;

}

The preceding example defines the CommentedPurchaseOrder XML datatype. It extends
the PurchaseOrder datatype by allowing a Comments element to be included within a
purchase order.

Creating an Open PurchaseOrder Schema

Sometimes it is necessary to allow data to be included within an instance of a particular XML
datatype even if you did not anticipate this when you created the schema. For example, a
company might submit a purchase order containing account information to be used to pay
for shipping the requested items. Schemas that allow the inclusion of additional elements
and attributes that are not formally defined within the schema itself are often referred to as
open schemas.

You can create an open schema by decorating a public field or property with the
XmlAnyAttribute and XmlAnyElement attributes. The XmlAnyAttribute attribute specifies that
the parent element can contain any XML attribute in addition to the ones formally defined

27

within the schema. The XmlAnyElement attribute specifies that the parent element can
contain any XML element in addition to the ones formally defined within the schema.

The flexibility of open schemas can be very enticing. However, you should consider the
consequences before you create an open schema because the code needed to handle and
process the extended data can become very complex.

One popular method for allowing extended information to be included within an instance
document in a semi-controlled fashion is to provide an area in the document definition for
that information. The following example defines an element within the PurchaseOrder
datatype that is designated for containing extended information about the purchase order:

[Xm Root (" PurchaseOrder", |sNullabl e=false)]
[Xm I ncl ude(typeof (Comrent edPur chaseOrder))]
public class PurchaseOr der

{
[Xm El enent (1 sNul | abl e=f al se)]
public Address BillingAddress;
[Xm El enent (1 sNul | abl e=f al se)]
publ i c Address Shi ppi ngAddress;
[Xm Array("ltems", IsNullabl e=false)]
[Xm Arrayltem("Itent, 1sNullable=false)]
public PurchaseOrderitem|[] Itens;
[Xm El enent (" Addi tional I nfo")]
public Additionallnfo Info;
/1 Additional type definitions...
}

/'l Previously defined type definitions renoved for clarity...

public class Additionallnfo

{
[Xm AnyAttribute]

public Xm El enent Additional Attri butes;

[Xm AnyEl ermrent]
public Xm El ement [] Additional El enents;

The preceding code defines an additional element within the PurchaseOrder XML datatype
called Additionallnfo. This element can contain any attribute as well as any element. The

above code generates the following schema containing the Additionallnfo element definition:

<schema attri buteFormDef aul t ="qual i fi ed"
el enent For nDef aul t ="qual i fi ed"

t arget Nanespace="http://tenpuri.org/">
<el enent nane="PurchaseOrder" type="s0: PurchaseOrder" />
<conpl exType nanme="Pur chaseOrder" >
<sequence>
<el ement m nOccurs="1" maxOccurs="1" nanme="Billi ngAddress"
type="s0: Address" />
<el ement mi nCccurs="1" maxCOccurs="1" nanme="Shi ppi ngAddr ess
type="s0: Address" />

<el ement mi nGCccurs="1" maxCccurs="1" nanme="Itens"
type="s0: ArrayOf PurchaseOrderltent />
<el ement mi nCccurs="1" maxCccurs="1" nane="Addi tional | nf 0"
type="s0: Addi ti onal I nfo" />
</ sequence>
</ compl exType>

<l-- Additional definitions removed for clarity -->

<conpl exType nanme="Addi ti onal | nfo" >
<sequence>
<any m nQOccurs="0" maxOccur s="unbounded" />
<sequence>
<anyAttribute />
</ conmpl exType>
</ schema>

The public field or property decorated by the XmlAnyAttribute attribute can be of type
XmlElement or XmINode. Because the XmlElement and XmINode types are part of the XML
DOM that ships with .NET, you can use the methods and properties exposed by these types
to navigate through the additional data that accompanied the purchase order.

Defining the AcceptPO Web Method

Now that | have defined the PurchaseOrder type, | need to define the Web method that will
accept the purchase order. The body of the incoming SOAP message will contain an
instance of the PurchaseOrder XML datatype. It needs to be decorated with the properly
initialized SoapDocumentMethod attribute, as discussed in the previous chapter.

The root element of the body of the SOAP document must be named PurchaseOrder. By
default, XML serialization will give the root element the same name as the input parameter of
the Web method. Calling the parameter PurchaseOrder would create a name conflict with

my class definition, so you must override how parameters are serialized using one of two
approaches.

The first approach is to use the XmlElement attribute to decorate the parameters of a Web
method to control how they will be serialized. The following code defines a Web method that
accepts an instance of the PurchaseOrder XML datatype:

[WebMet hod]

[SoapDocunment Met hod(Par anet er St yl e=SoapPar anet er St yl e. Bar e)]

public void Accept PO([Xm El enent (" PurchaseOrder”, 1sNull abl e=fal se)]
PurchaseOrder paraml)

{

/1l 1nplenmentation...

}

The XmlAttribute attribute can be applied to Web method parameters as well, but these
parameters must be parameters of “wrapped” methods.

Because the PurchaseOrder class will be serialized as the root of the SOAP message body,
I have a second option in addition to using the XmlElement attribute: | can decorate the class
with the XmlRoot attribute. This attribute controls how a .NET type is serialized as the root of
the document. Here is an example:

[Xm Root (" PurchaseOrder”, |sNull abl e=fal se)]
[Xm I ncl ude(typeof (Comrent edPur chaseOrder))]
public class PurchaseOr der

{
/] Definitions...

}

Other attributes that you can apply to Web method parameters include XmlAnyElement,
XmlAnyAttribute, and XmlText.

Server-Side Validation

Throughout this chapter, | create a definition for a strongly typed PurchaseOrder XML
datatype. | also create a strongly typed interface for the AcceptPO Web method. You might
be surprised by the fact that the ASP.NET runtime will not validate incoming requests
against the schema | have so painstakingly created. For example, the following SOAP
request message will be parsed by the ASP.NET runtime without throwing an exception.
<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: soap=http://schenmas. xm soap. or g/ soap/ envel ope" >
<soap: Body>
</ soap: Body>
</ soap: Envel ope>

As you can see, the elements and attributes that are not allowed to be null are not contained

within the preceding document. However, the document will be accepted and deserialized by
the ASP.NET runtime. This is an obvious problem because you cannot count on the

ASP.NET runtime to perform any validation on your behalf.

One way to overcome this problem is to validate each of the objects and their associated
properties after the ASP.NET runtime deserializes the request message. This doesn’t sound
like much fun. Instead of writing my own validation code, | can leverage the XML DOM to do
it for me.

I could write a SOAP Extension that would validate the XML request against the schema
advertised in the Web service’s WSDL document. Such an extension could intercept the
stream before it is deserialized by the runtime. It could then initialize the DOM with the
schemas section of the WSDL document and then attempt to load the document. If the DOM
throws an exception, the exception could be packaged in an instance of a SoapException
and then returned to the client.

Implementing Custom Serialization

XML serialization supports the ability to serialize instances of an ADO.NET DataSet as well
as classes that derive from the DataSet class. It can do this because the DataSet class
implements the IXmlSerializable interface.

A .NET type that needs more advanced control over the way it is serialized can implement

the IXmlSerializable interface. As of this writing, the ADO.NET DataSet is the only .NET type
that implements this interface. Unfortunately, this interface is intended to be used only

internally within the .NET Framework. Hopefully, this interface will be available to developers
in the future.

The signature of the IXmlSerializable interface is as follows:
public interface | Xm Serializable

{
System Xml . Schema. Xml Schema Get Schema() ;
voi d ReadXm (System Xm . Xl Reader reader);
void WiteXm (System Xml . Xm Witer witer);
}

The GetSchema method is called when the ASP.NET runtime generates the WSDL
document for the Web service. The ReadXml method is called when the SOAP message
received from the client is being deserialized. The WriteXml method is called when the
response SOAP message is being serialized.

When a strongly typed ADO.NET record set is exposed by the interface of a Web service,
the schema for the strongly typed record set is resolvable using an external URL. For
example, say | have a strongly typed record set called MyRecordSet that is exposed by a
Web service addressable at http://somedomain/MyWebService.asmx. The schema for
MyRecordSet would therefore be located at
http://somedomain/MyWebService.asmx?MyRecordSet.

The URL that references the MyRecordSet schema is imported into the schema for the Web
service itself. Calls to this URL will return the schema produced by calling the
WriteXmISchema method exposed by the MyRecordSet class.

Summary

XML serialization is responsible for serializing instances of .NET types to XML and
deserializing XML to instances of .NET types. This includes support for instances of built-in
.NET types, classes, and structures as well as composite types such as arrays, nested

object hierarchies, and objects that support the ICollection and IEnumerable interfaces. It
also supports serializing .NET type definitions into an XML schema.

XML serialization has default behaviors that might not be appropriate in all situations, so the
.NET platform provides a collection of attributes that you can apply to .NET type definitions,
variable declarations, and parameter declarations to control the behavior of .NET
serialization.

If the collection of attributes is not sufficient, you can use the IXmlSerializable interface. This

interface allows fine-grained control over how an instance of a .NET type is serialized to
XML.

Chapter 8: Using Remoting to Build and
Consume Web Services

Practically every modern development platform provides a distributed object infrastructure
that allows a client to communicate with a remote object. Prior to Microsoft .NET, this role
was fulfilled by DCOM. The distributed object infrastructure for .NET is called Remoting. You
can use it to build and consume Web services because one of the message formats it
supports is SOAP.

In the previous chapter, | discussed how you can use ASP.NET to build and consume Web
services. In some respects, ASP.NET provides a more complete platform for building Web
services than Remoting does. For example, Remoting supports only RPG-style messages.
Microsoft is also hyping ASP.NET as the preferred platform for building Web services. So
when should you consider using Remoting instead of ASP.NET?

Remoting vs. ASP.NET

You should consider using Remoting over ASP.NET in at least three scenarios:

. When you need to use a transport protocol other than HTTP ASP.NET is tightly
coupled to the HTTP transport protocol, but Remoting is transport protocol agnostic.

" When you need to host a Web server in a process other than 1IS ASP.NET is
tightly coupled to 1IS, but Remoting can host a Web service in any .NET process.

. When you need strong support for .NET types The primary responsibility of the
Remoting framework is to serve as the distributed object infrastructure for .NET, so
Remoting provides the necessary extensions to facilitate this.

Let's discuss each of these scenarios in more detail.

HTTP is the most widely supported transport protocol used by Web services, but it might not
be ideal in some situations. For example, a queuing application might find asynchronous
protocols such as SMTP more appropriate. A Web service hosted by a satellite might not
support the HTTP protocol at all.

Remoting allows a client to communicate with a remote object over a wide variety of
transport protocols, including HTTP and raw TCP/IP. If a particular transport protocol is not
supported out of the box, you can extend the Remoting framework to use the desired
transport protocol.

Remoting also supports an extensible means of specifying the format of the message that is
shipped between the client and the server. Remoting supports two message formats, binary
and SOAP. Binary is more efficient and less verbose than SOAP. However, because it is not
based on industry standards, it does not offer the same degree of interoperability that is
provided by its SOAP counterpart. Therefore in this chapter, | limit my discussion to the
SOAP message format.

| anticipate that Remoting will support the SOAP 1.2 specification as a new message format
type. If this proves to be the case, the Remoting framework’s support of pluggable message
formats should dramatically simplify the task of maintaining SOAP 1.1 versions of Remoting
Web services for backward compatibility.

You can alter which message format and transport an application uses by changing a

configuration setting. This is ideal for distributed .NET applications that reside in a mixed
environment. A .NET client residing on the same corporate network as a .NET server can
use the more performant binary message format rather than TCP/IP. But the same .NET

application can use the SOAP message format over HTTP if it needs to communicate
through a firewall or an HTTP proxy server.

In Chapter 3 | described some of the limitations of the current SOAP specification relating to
features typically supported by a distributed object infrastructure. For example, SOAP does
not define a means of passing an object by reference between the client and the remote
object. To fulfill its role, Remoting provides its own implementation to overcome these
limitations.

Remoting provides a set of features for Web services in addition to the ones defined by

industry -standard specifications. The value-added services Remoting provides include

] Activation Remoting provides the ability to remotely activate an object, including full
support for parameterized constructors.

] Lifetime support When a remote object is activated on behalf of a client, this
mechanism ensures that the remote object is freed when it is no longer needed by the
client.

] Passing objects by reference Remoting provides the ability for a client to pass
objects by reference. The SOAP specification defines only a means of passing objects
by value between the client and a Web service.

] Full fidelity for .NET types A Web service built on top of the Remoting framework
exposes additional metadata about its types. This information is necessary to maintain
full fidelity of the .NET types exposed by the Web service.

To support these features, the Remoting team had to define a proprietary set of extensions.
If interoperability is a priority, be sure to not leverage these features within your Web service.

The Grabber.NET Application

Napster has heightened public awareness of peer-to-peer applications. A peer- to-peer
application acts as both a client and a server. In the case of SOAP-based Web services, the
application is capable of sending a SOAP request to a peer as well as accepting SOAP
requests from a peer.

In this chapter, | build a .NET version of Napster called Grabber.NET. It is a WinForm
application with a Ul similar to Windows Explorer. The Grabber.NET client looks like this:

Ll
File [t
m Cood. Ciod. ofll. asdll red0). raddi., adl., esdll. radd 2%
=1 hasl
gt sl radld . ad T e R T, [T 1 T] T k] rachd
a] hasl2

. raHE . el el eeED. iadh . il alE (5 =

et red™ . aed? . eadT. eadT . el Y. aadBl psdE)

% R BT, BT, - T, N -~ I T W T

224

The user can connect to other Grabber.NET applications and browse the directory structure
to locate files of interest. The user can also select specific files and copy them to a local

directory.

Grabber.NET will communicate with other peers via SOAP over HTTP. Because the
WinForm application will act as both a client and a server, Grabber.NET cannot be
implemented using ASP.NET. In contrast, Remoting allows you to create a Web service that
is hosted in any process, including a WinForm application.

Much of the implementation of Grabber.NET is Ul related, so in this chapter | list only the
code relevant to Remoting. The full source code for Grabber.NET is on the companion CD.

Remoting Architecture

Before | delve into the specifics of implementing and consuming Web services using
Remoting, let's discuss the architecture for enabling a client to communicate with a remote
object.

When a client creates an instance of a remote object, it receives a proxy instead of the
object itself. The proxy exposes the same interfaces as the actual object. When a client
invokes a method or accesses a field or property on the proxy, the proxy is responsible for
forwarding the request to the remote object. The diagram on the next page shows the major
components involved in facilitating communication between the client and the server.

The Remoting infrastructure is composed of four major components:

. Remoting runtime The Remoting runtime is responsible for dynamically creating
proxies on behalf of the client. It is also responsible for invoking the appropriate channel
on the server to listen for incoming requests.

" Proxy The proxy object is responsible for receiving the method calls from the user.
Once a method call has been received, the proxy is responsible for eliciting the help of
the appropriate formatter and transport to send the parameters to the remote object.

. Formatter The formatter is responsible for serializing the parameters into a format
that can be shipped across the wire. Remoting ships with two formatters, binary and
SOAP. In this chapter, | discuss the SOAP formatter.

= Channel The channel is responsible for sending formatted messages between the
client and the server. The client-side channel is responsible for sending the message
over the designated transport protocol. The server-side channel is responsible for
monitoring incoming messages and passing those messages to the appropriate
formatter. Remoting ships with two channels, TCP and HTTP.

Clisrt @
r/—jii_-ﬁ

Preary Proxy Proay
Transpasen: Proxy Trifehpangnd Proeey Trangpasni Py

One important feature of the Remoting framework that | discussed earlier is support for
pluggable formatters and channels. The preceding diagram highlights the ability to combine
any formatter with any channel. As you will see in later sections, you can change which
formatters and channels a Remoting application uses by modifying a configuration file. For
example, by modifying the configuration file you can allow your SOAP-based Web service to
switch from accepting requests over HTTP to accepting requests over raw TCP/IP.

Creating an lIS-Hosted Web Service

The illegal sharing of licensed content by peer-to-peer programs is a serious issue, so | will
implement a Licensing Web service that Grabber.NET will use to verify that the client has a
valid license to copy the requested content. All Grabber.NET peer applications will be
responsible for validating the client’s request for licensed content against the centrally
hosted Licensing Web service, as shown here:

Licansing

Wb
senvica
Grabber, NET Grabbar. NET Grabber NET o
clont el cliant

Creating the implementation of a Web service hosted by the Remoting runtime is trivial. The
only requirement is that the object must derive from the MarshalByRefObject class. Deriving
from MarshalByRefObject instructs the Remoting runtime to ensure that the object is
confined to the application domain in which it was created.

When the client requests a new object derived from the MarshalByRefObject class, the

remote object created on behalf of the client will not be passed by value to the client.
Instead, the client will receive a proxy that will serve as a reference to the remote object.

The Licensing Web service will expose a Validate method that verifies whether the user is

licensed to use the content. Here is the implementation:
usi ng System

nanespace SonmeRecor dConpany

{
class Licensing : Marshal ByRef Obj ect
{

public bool Validate(string resource, Licenselnfo
I i censel nf o)

{
bool isValid = true;
/1 1nplenmentation...
return isValid;

}

}

The implementation of the Licensing Web service is contained within the Licensing class.
The class contains the Validate method, which accepts two parameters: a string that
identifies the resource and an object of type Licenselnfo that contains the client’s license
information. This class derives from MarshalByRefObject, so when the Web service is
hosted by the Remoting runtime, the Validate method will be invoked on the record
company’s server.

Unlike the Licensing class, instances of the Licenselnfo object should be passed by value.
This ensures that the Licensing Web service will maintain a high degree of compatibility with
other SOAP implementations because SOAP 1.1 does not support passing objects by
reference.

Even if the Licensing Web service were to be consumed only by Remoting clients, you would
still want to pass the object by value. If the object were passed by reference, needless
round-trips would occur between the client and the server as the properties exposed by the
class are accessed.

For an object to be passed by value, it must be marked as serializable. You can mark an
object as serializable by decorating the class with the Serializable attribute or having the
class support the ISerializable interface.

Instances of a class that is decorated with the Serializable attribute are automatically
serialized by the Remoting runtime. Unlike ASP.NET, Remoting is capable of serializing all

properties and fields regardless of their visibility. Recall that ASP.NET can serialize only data
exposed by public read/writable properties and fields.

Sometimes an object will want a degree of control over how it is serialized. For example, an
object might contain state that is specific to the machine on which it is located, such as a
handle to a system resource. In this case, the class can implement the [Serializable
interface.

Instances of the Licenselnfo class can be serialized by the runtime, so | will decorate it with
the Serializable attribute. Here is the rest of the Licensing Web service implementation,
which defines the Licenselnfo class:

[Serializable]
public class Licenselnfo

{
string license = "";
Dat eTi ne expirati onDate = new Dat eTi ne();
public Licenselnfo(string license, DateTi me expirationDate)
{
this.license = |icense;
this. expirati onDate = expirationDate;
}
public string License
{
get{ return this.license; }
}
publ i c DateTi me ExpirationDate
{
get{ return this.expirationDate; }
}
}

Now that | have implemented the Licensing Web service, | need to configure it so that it is
hosted by the Remoting runtime. The runtime provides two different activation models, well-

known object and client-activated object.
Well-Known Object Activation Model

A well-known object accepts method requests without requiring the client to first formally
instantiate the object. From the client’s perspective, the object already exists and calls can
be made to it without the need to create or initialize the object. This is the default behavior of
SOAP-based Web services.

Remoting supports two configurations for welkknown objects, single call and singleton.
These configurations control when the well-known object that handles the client’s requests is

actually instantiated on the server.

The single call configuration is the most synonymous with ASP.NET. Each time a request is
received, the Remoting service creates a new instance of the target object to process the
request.

With the singleton configuration, the target object is instantiated when the first request is
received. The object is kept alive by the Remoting runtime and is responsible for processing
all subsequent requests by all clients. All requests received by the service from any client
are handled by the same object.

You should consider the singleton configuration when the same expensive resources are
leveraged across multiple method requests. An expensive resource can be initialized within
the singleton object’s constructor. It can then be used to process multiple method requests
over the duration of the object’s lifetime. Because the resource might be used to process

multiple requests simultaneously, either the resource must be thread safe or you should use
the appropriate synchronization primitives.

In general, remote objects that support the single call configuration are the easiest to

develop. Because each request is processed by a separate instance of the remote object,
the developer need not be concerned with coherency issues such as race conditions and

deadlocks.

With either configuration, a client is never allocated its own object that spans across more
than one method call. In the case of the single call configuration, the state is never
maintained across method calls because each request is addressed by a new instance of
the object. In the case of the singleton configuration, the state of the object is shared across
all clients. Therefore, if a well- known object must manage state specific to a particular client,
it must use an out-of-band mechanism.

Client-Activated Object Activation Model

In the client-activated scenario, a remote object is created on behalf of the client and is

available to that client until it is garbage collected. Because SOAP does not define a protocol
that supports activation, Remoting defines an extension mechanism for facilitating this

behavior.

The Licensing Web service does not have to initialize expensive resources and does not

require lifetime management services, so | will configure it as a well-known object that
supports the single call mode.

You can configure the remote component by creating an XML file. The following XML file
configures the Licensing Web service:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<systemrunti nme.renoting>
<application>
<service>
<wel | known node="Si ngl eCal | "
t ype="SomeRecor dConpany. Li censi ng, Licensing"
obj ect Uri ="Li censi ng. soap"/ >
</ service>
</ application>
</systemruntine.renoting>
</ confi guration>

The service element contains the configuration for objects exposed to other applications. It
can contain either a wellknown or activated element. (I cover configuring client-activated

objects later in the chapter.)

You use the wellknown element to configure well-known objects. The element must contain
three attributes: mode, type, and objectUri. The mode attribute indicates whether the well-
known object should be hosted as a single call (SingleCall) or a singleton (Singleton). The
type attribute contains the full type name and the assembly of the object that should be
exposed by the Remoting runtime. The objectUri attribute specifies the URI where the object
can be accessed. In the case of the Licensing Web service, the URI specified is
Licensing.soap. Licensing.soap does not physically exist; requests sent to the URI are
intercepted and processed by the Remoting runtime.

The Licensing Web service can be hosted within any process. Because many clients might
access the Licensing Web service simultaneously, a good option is to host the Web service
within Microsoft Internet Information Services (IIS). This allows the Web service to be hosted
in a Web farm that takes advantage of applications that improve the manageability of the
Web farm (such as Microsoft Application Center).

The Licensing Web service can be deployed within any IIS Web application. You can create
a new Web application by opening the IS MMC, right- clicking on the Web site, selecting
New, and then choosing Virtual Directory. Once the Web application has been created, the
contents of the configuration file | just created can be copied into the Web application’s
web.config file.

The Remoting runtime will expect the assemblies to be located within the Web application’s
bin directory. Therefore, you must create a bin subdirectory and copy the Licensing.dll
assembly into the new directory.

You can access the Licensing Web service by addressing the Licensing.soap file within the
Web application directory. For example, if the Licensing Web service is located in the
SomeRecordCompany Web application on my local server, | can address it using the
following URL.:

http://1ocal host/ SoneRecor dConpany/ Li censi ng. soap

If the Web service is hosted in IIS, the WSDL document will be automatically generated if
wsdl is appended as a query string on the URL. The WSDL document for the Licensing Web
service is available at the following URL:

http://1 ocal host/ SoneRecor dConpany/ Li censi ng. soap?wsdl

Creating a WinForm-Hosted Web Service

The primary purpose of Grabber.NET is to facilitate the exchange of files, so it needs a way
to obtain a file from a remote computer. In this section, | create the SoapFileShare Web

service, which supports two endpoints, one for retrieving files and the other for navigating
directories.

The File endpoint allows a client to obtain the contents of the requested file from a remote
computer. Here is the implementation:

usi ng System
using 10 = System | G,

nanespace SoapFil eShare

{
public class File : Marshal ByRef Obj ect
{
string rootDirectory = @c:\tenmp\";
public byte[] GetFile(string fileNane, string |license)
{
/1 Validate the |icense...
/1l Obtain the contents of the requested file.
| O Stream s =10 File.Open(rootDirectory + fileNane,
| O. Fi | eMode. Open) ;
byt e[] fileContents = new byte[s. Length];
s. Read(fileContents, 0, (int)s.Length);
return fileContents;
}
}

The File endpoint exposes the GetFile method. The name of the targeted file and the
necessary licensing information are passed to the GetFile method, which uses the
information to determine whether the client is licensed to receive the file. If the client is
licensed to receive the file, the GetFile method obtains a byte array for the requested file and
returns it to the client. Later in the chapter, | discuss how to access the Licensing Web
service, which validates the request.

Grabber.NET also needs to browse the remote computer to see what files are available, so |
need to create the Directory endpoint. The Directory endpoint exposes methods that allow
the client to navigate the directory hierarchy on the remote computer and obtain a list of files
within a particular directory:

public class Directory : Marshal ByRef Obj ect

string rootDirectory = @c:\tenp";

/1l Get the list of files at the root directory.
public string[] CGetFiles(string path)
{
/1 Cbtain the Iist of files in the directory.
string [T fileNanes =
IO. Directory. GetFiles(rootDirectory + path);

/1 Truncate the path information so that it is relative
/1 to the root directory.
for(int i = 0; i < fileNames.Length; i++)
{
char [] newFil eNane =

new char[fil eNanes[i].Length -
rootDirectory. Length];

fileNames[i].CopyTo(rootDirectory.Length,
newri | eNanme, O,

fileNames[i].Length - rootDirectory.Length);
fileNames[i] = new string(newFil eNane);

return fil eNames;

/'l Get the list of files at the root directory.
public string[] CGetDirectories(string path)
{

string [] directories =

IO Directory. GetDirectories(rootDirectory +
pat h);

/'l Truncate the path information so that it is relative
/1l to the root directory.
for(int i = 0; i < directories.Length; i++)
{
char [] newDirectory =

new char[directories[i].Length -
rootDirectory. Length];

directories[i].CopyTo(rootDirectory. Length,
newDi rectory, O,

directories[i].Length - rootDirectory. Length);
directories[i] = new string(newDirectory);

return directories;

}

The Directory endpoint exposes two methods, GetFiles and GetDirectories. GetFiles returns

a list of files within a specified directory, and GetDirectories returns a list of subdirectories
within a specified directory. You can use these two methods to navigate a directory

hierarchy.

The primary purpose of Grabber.NET is to allow the exchange of files between peers. A
peer-to-peer application has to act as both a client and a server. Therefore, the WebForms
application itself must act as a Remoting server.

One major advantage of the Remoting framework over technologies such as ASP.NET is its
ability to host a Web service in any process over any transport protocol. In this case, | want
the Grabber.NET WinForm application to listen for SOAP requests over HTTP.

Any .NET application can listen for incoming requests by calling the Configure static method
on the RemotingConfiguration object to initialize the appropriate listener. The method
accepts the path to a configuration file as its only parameter. The configuration file is similar
to the one | created for the Licensing Web service. However, unlike a Remoting Web service
hosted in 1IS, a Remoting Web service hosted within a process is not limited to HTTP.
Therefore, the channel needs to be configured.

The following configuration file configures Remoting to listen on port 88 for HTTP requests
for the File or Directory endpoint:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<systemruntime.renoti ng>
<appl i cati on nane="SoapFi | eShare" >
<service>
<wel | known node="Si ngl eCal | " type="SoapFil eShare. Directory,
SoapFi | eShare" objectUri="Directory.soap"/>

<wel | known nmode="Si ngl eCal | " type="SoapFil eShare. Fil e,
SoapFi | eShar e"

objectUri="File.soap"/>
</ service>
<channel s>

<channel port="88"
type="System Runti ne. Renpti ng. Channel s. Ht t p.

Ht t pChannel , System Runti ne. Renoting" />

</ channel s>
</ application>
</systemruntine.renoting>
</ confi guration>

As with the Licensing Web service hosted in 1S, you must configure the Remoting runtime to
host the Web service. Recall that a Remoting Web service can be hosted via any number of

transport protocols. Because the Licensing Web service is hosted in IIS, the HTTP transport
was assumed. Also, because the Licensing Web service is hosted in a particular Web
application, | needed to specify only the filename of the endpoint. But the SoapFileShare

Web service is not hosted within 1IS, so | need to specify the channel as well as the full
endpoint to the path.

As in Web services hosted in IS, the objectUri property of the wellknown element specifies

the filename that will serve as the address of the endpoint. But unlike in Web services
hosted in IS, you must specify the path to the file using the name attribute of the application
element.

In the case of Grabber.NET, the directory is SoapFileShare, so the Directory endpoint is
addressable at http://localhost/SoapFileShare/Directory.soap. You can also specify a
subdirectory. For example, if the name attribute is set to Grabber.NET/SoapFileShare, the
Directory endpoint is addressable at http://

localhost/Grabber.NET/SoapFileShare/Directory.soap.

The transport protocols supported by Remoting are defined within the channels element.
Each supported transport protocol is referenced within an individual channel element. The
channel element contains two attributes, port and type. The port attribute specifies the port
the transport protocol will use to communicate with the remote application, and the type
attribute specifies the .NET type that implements the channel and the type’s assembly.

By convention, the configuration file for the application has the same name as the assembly,

with .config appended to it. In the case of Grabber.NET, the WinForm application is named
SoapFileExplorer.exe, so | will name the configuration file SoapFileExplorer.exe.config.

Once the configuration file has been created, it must be explicitly loaded by the application.
You do this by passing the path of the configuration file to the Configure static method
exposed by the RemotingConfiguration object. In the case of Grabber.NET, the Configure
method is called within the constructor for the main WinForm, as shown here:

public Expl orerForm)

{
11l

/'l Required for Wndows Form Designer support
/1

InitializeConponent();

/'l Load the Rempting configuration files.
Renot i ngConfi gurati on. Confi gure(" SoapFi | eExpl orer. exe.config");

You can also configure a well-known object within the application code itself so that you can
dynamically configure a wellknown object at run time. The following code configures the File

and Directory well-known objects:
Renoti ngConfi guration. Appl i cati onName = " SoapFi |l eShare";

Renot i ngConfi gurati on. Regi st er Wl | KnownSer vi ceType(t ypeof (SoapFi | eSh
are.File),

"Fil e.soap", WellKnownObj ect Mode. SingleCall);

Renot i ngConfi gurati on. Regi st er Wl | KnownSer vi ceType(t ypeof (SoapFi | eSh
are.

Directory), "Directory.soap", WellKnownObjectMde. SingleCall);

Regardless of how the well-known objects are configured, Remoting will spin up another
thread to listen for and process incoming requests.

Accessing Web Services

Now that | have created the Licensing and SoapFileShare Web services for Grabber.NET, it
is time to write the client portion of Grabber.NET to access these Web services. In this
section, | discuss three ways to create a Remoting proxy that will be used to access a Web
service.

Recall that the GetFile method of the File object is responsible for sending the requested file
to the client. Before the file is sent, the licensing information received from the client must be
verified against the Licensing Web service. For this example, | will use the new operator to
create the proxy object.

new Keyword-Generated Proxy

You can configure the Remoting runtime to intercept calls to the new operator and return a
dynamically generated proxy instead of the object itself. You do this by registering the well-
known object within the Remoting configuration file. The following is the modified version of
the SoapFileExplorer.exe.config file:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<systemrunti me.renoting>
<appl i cati on nanme="SoapFi | eShare" >
<service>
<wel | known node="Si ngl eCall" type="SoapFil eShare.Directory,
SoapFi | eShare" objectUri="Directory.soap" />

<wel | known node="Si ngl eCal |l " type="SoapFil eShare. Fil e,
SoapFi | eShar e"

objectUri ="File.soap" />
</service>
<client>
<wel | known type="SonmeRecordConpany. Li censi ng, Licensing"
url ="http://1ocal host/ SoneRecor dConpay/ Li censi ng. soap" />
</client>

<channel s>

<channel port="88"
type="System Runti ne. Renpti ng. Channel s. Ht t p.

Ht t pChannel , System Runti nme. Renoti ng" />
</ channel s>
</ application>
</systemruntine.renoting>
</ confi guration>

| added a client element that contains a list of Web service endpoints used by the client.

Individual endpoints are referenced by adding a wellknown child element. Note that the
wellknown element under the client element is different from the wellknown element under

the server element.

The client wellknown element must contain two attributes, type and url. The url attribute

contains the address of the targeted endpoint. The type attribute references the .NET type
within a particular assembly that describes the remote object. The assembly can be the
Licensing.dll that | previously deployed on IIS.

You can also register the well-known object reference using the
RegisterWellKnownClientType static method exposed by the RemotingConfiguration class.

The following example registers the Licensing well-known object:

Renot i ngConf i gurati on. Regi st er Wl | KnownCl i ent Type(typeof (SoneRecordC
onmpany.

Li censing), "http://local host/ SoneRecor dConpany/ Li censi ng. soap");

Because the generated proxy is strongly typed, the same Licensing assembly that was

referenced within the Remoting configuration file also needs to be referenced by the client
application itself. In this case, the SoapFileShare Web service application must reference the

Licensing.dll assembly.

In many cases, it is not practical to have clients reference the assembly that contains the
implementation of the Web service. Later in this chapter, | discuss how to build a .NET
assembly containing the necessary metadata from the Web service’s WSDL file.

Once the configuration file has been modified and the License.dll assembly is referenced by
the SoapFileShare project, the Remoting runtime will automatically create a proxy object on
behalf of the client when the new operator is called. The Validate method can then be called
on the resulting proxy object and the proxy will forward the call to the Licensing Web service.
Here is the implementation:

/1 Validate the license info if it was sent by the client.
if(licenselnfo !'= null)

{

SonmeRecor dConpany. Li censing |icensing = new
SomeRecor dConpany. Li censi ng() ;

Iicensing. Validate(fileName, |icenselnfo);

}
Other than the fact that | load the Remoting configuration file when the WinForms application

is initialized, the code for accessing the Licensing Web service is no different than if | were
directly accessing the assembly.

GetObject-Generated Proxy

Next | need to create the client code to access the SoapFileShare Web service. Because the
SoapFileShare Web service can be hosted by any number of Grabber.NET peers, using the
new keyword to create the proxy raises a significant issue: once a well-known object has
been configured by the Remoting runtime, the resulting proxy will always be associated with
the same endpoint.

Another way to create a proxy for a welkknown object is by calling the GetObject static
method on the Activator class. When the new keyword is used to create a proxy object, the
Remoting runtime actually calls the GetObject method to obtain the proxy. Because the
Activator object is public, you can call it directly.

The GetObject method is overloaded and supports two method signatures. Both versions of
the GetObject method accept two parameters, the type of object that should be created and
the URL where the wellknown object is located. The second GetObject method signature
also accepts an object containing channel-specific data.

Recall that SoapFileExplorer has a look and feel similar to that of Windows Explorer. The
right pane contains a TreeView control for navigating the directory structure, and the left
pane has a ListView control. When a particular node in the TreeView control is selected, the
ListView control is refreshed with all of the files contained within the particular directory. The
following code updates the ListView control based on the list of files obtained from the
SoapFileShare Web service:

private void directoryTree_AfterSel ect (object sender,

System W ndows. Forns. TreeVi ewEvent Args e)

{
/'l Create an instance of the SoapFil eShare.Directory object.
string url = ((DirectoryTreeNode)e. Node). Ul + "Directory. soap";

SoapFi | eShare. Directory directory =
(SoapFil eShare. Directory)Acti vator.

Get Qbj ect (typeof (SoapFi |l eShare. Directory), url);

/1 Qbtain the files within the selected directory.

string [] filePaths =
directory. GetFiles(((DirectoryTreeNode)e. Node) . Pat h) ;

/!l Display the files within the list view
this.fileList.Cear();

foreach(string filePath in filePaths)

{

this.fileList.ltenms. Add(new FileListViewtem(url,
filePath));

}
}

First the URL of the targeted Directory endpoint of the SoapFileShare Web service is
dynamically built. This URL is then passed to the GetObject method to obtain a proxy object

for the Directory endpoint. A list of files is then obtained for the selected directory by calling
the GetFiles method on the proxy.

By default, GetObject will create a proxy object that communicates with the well-known
object via SOAP over HTTP. Therefore, you need not configure the Remoting runtime to
execute the preceding code.

WSDL-Generated Proxy

To dynamically create a proxy, the Remoting runtime needs access to an assembly that
contains type information that describes the targeted Web service. As | mentioned earlier,
this can be the assembly that contains the implementation of the Web service.

Because Grabber.NET both hosts and consumes the SoapFileShare Web service, it is
practical to have the Remoting runtime dynamically generate a proxy for the SoapFileShare
Web service. However, it is not practical to have Grabber.NET reference the assembly that
contains the implementation of the Licensing Web service. You need some way of creating
an assembly that contains the type information used to describe the Web service without
containing the implementation.

You can use one of the tools provided by the Remoting framework, SoapSuds, to convert
the type information contained in a WSDL document into .NET type information. This type
information can then be used by the Remoting runtime to create a proxy dynamically.

The following command creates an assembly containing metadata that describes the
Licensing Web service:

soapsuds -url:http://1ocal host/ SoneRecordLabel / Li censi ng. soap?wsdl
-oa: Licensing.dl | —gc -now

This command creates an assembly called Licensing.dll as well as the source code for the
assembly. Either the assembly can be referenced or the source code can be included by a
client application such as Grabber.NET that creates proxies using the new keyword or the
GetObject method.

Table 81 describes the command-line parameters supported by SoapSuds.

Table 8-1: Command-Line Parameters Supported by SoapSuds

Switch Description

-domain:domainName or - The domain against which the passed

d:domainName credentials should be authenticated.

-generatecode or —gc Tells SoapSuds to generate source code for the
proxy.

-httpproxyname:proxy or -hpn:proxy The name of the proxy server that should be
used to connect to the Web server to obtain the
WSDL.

-httpproxyport:port or -hpp:port The port number for the proxy server that should
be used to connect to the Web server to obtain
the WSDL.

-inputassemblyfile:fleNameor - The name of the assembly file from which to

ia:fileName obtain type information. Do not include the
extension when specifying the filename.

Table 8-1: Command-Line Parameters Supported by SoapSuds

Switch

Description

-inputdirectory:directory or -
id:directory

The directory of the input assembly files.

-inputschemafile:fileName or -
is:fileName

The name of the WSDL file from which to obtain
type information.

-nowrappedproxy or -nowp

Specifies that the transparent proxy should not

be wrapped within a derived version of the
RemotingClientProxy class.

-outputassemblyfile:fileName

or -oa:fileName

The name of the assembly file that will contain
the generated proxy. Whenever an assembly is
created, the associated source code will also be
created.

-outputdirectory:directory or -
od:directory

The directory where all output files will be saved.

-outputschemafile:fileName or -
os:fileName

The filename of the generated WSDL or SDL
document.

-password:password or -p:password

The password that should be used to
authenticate against the server from which the
WSDL or SDL document is obtained.

-proxynamespace:namespace

or -pn:namespace

-sdl

The namespace in which the resulting proxy
class will reside.

Specifies that SoapSuds should generate an

SDL file that describes the types contained
within a particular assembly.

-serviceendpoint:URL or -se:URL

The URL that should be placed within a
generated WSDL or SDL file to describe the

endpoint.

-strongnamefile:fileName or -
sn:fileName

The file that contains the key pair that should be
used to sign the generated assembly.

-types:typel,assemblyf,endpointUrl]

[typel,assembly[,endpointUrl]] [...]

The specific types that will serve as input.

-urltoschema:URL or -url:URL

The URL from which the WSDL or SDL file can
be obtained.

-username:username or -u:username

The username that should be used to
authenticate against the server from which the
WSDL document is obtained.

-wrappedproxy or -wp

Specifies that the transparent proxy should be
wrapped within a derived version of the
RemotingClientProxy class.

-wsdl

Specifies that SoapSuds should generate a
WSDL file that describes the types contained

Table 8-1: Command-Line Parameters Supported by SoapSuds

| Switch | Description

| | within a particular assembly.

One of the more interesting command-line parameters is the -wp switch. This parameter

allows you to create a wrapped proxy. A wrapped proxy is a class that derives from the
RemotingClientProxy class. Its primary purpose is to expose properties that allow you to

more easily configure the HTTP channel. Table 8-2 describes the parameters exposed by
the RemotingClientProxy class.

Table 8-2: Parameters of the RemotingClientProxy Class

Property Description
AllowAutoRedirect Determines whether the proxy will honor a redirect request sent by
the server.
| Cookies | Used to access the cookies that have been sent from the server.
Domain The domain against which the passed credentials should be
authenticated.
| EnableCookies | Specifies whether cookies will be accepted by the proxy.
Password The password that should be used to authenticate against the
Web service.
| Path | The URL of the Web service’s endpoint.
PreAuthenticate Determines whether the authentication credentials should be sent
immediately or as a result of receiving a 401 (access denied)
error.
ProxyName The name of the proxy server that should be used to access the
Web servi ce.
ProxyPort The port number of the proxy server that should be used to access
the Web service.
Timeout Determines the period of time, in milliseconds, that a synchronous
Web request has to complete before the request is aborted. The
default is infinite (- 1).

| Url | The URL of the Web service’s endpoint.
| UserAgent | The value of the user agent HTTP header sent to the Web service.
Username The username that should be used to authenticate against the

Web service.

By default, the HTTP channel uses the hternet settings configured on the client’'s machine
using Control Panel, so in most cases it is not necessary to configure the proxy settings
using the wrapped proxy. If the client’s operating system is configured to route requests
through an HTTP proxy server, these settings will be applied to the proxy as well.

Because SoapSuds will generate the source code for the wrapped proxy, you can extend its

implementation. For example, you can add client-side logic to validate the parameters before
a call is made to the remote server.

240

Adding SOAP Headers

The final piece of implementation | need to do is to integrate Grabber.NET with the Licensing
Web service. Each time a client requests a file from another peer, the peer responding to the

request must ensure that the client is licensed to receive the content.

The distribution of some files is limited by licensing agreements, and some of those files are

in the public domain. Because license information is not part of the core functionality of the
GetFile method of the File Web service, | will pass it within the SOAP header.

You can add headers to the message by using the SetHeaders static function exposed by

the CallContext class. The SetHeaders method accepts an array of objects of type Header.

Each instance of the Header class encapsulates data about a particular SOAP header.
Table 83 describes the properties defined by the Header class.

Table 8-3: Properties of the Header Class

Property Description

HeaderNamespace The XML namespace of the header in which the element is
defined. The default is http://schemas.microsoft.com/clr/soap .

MustUnderstand Determines whether the header must be understood by the Web

service. The default is true.

Name The name of the header. Sets the name of the root element for
the header within a SOAP message.

Value The object that will be serialized within the header.

I will add the License header to calls made to the GetFile method of the File Web service.
This header will contain the serialized contents of an object that holds the client’s license
information. First | need to declare a class that will be used to contain the license
information. Here is the implementation:

[Serializabl e]
public class Licenselnfo

{
string license = "";
Dat eTi ne expirati onDate = new Dat eTi ne();

public Licenselnfo(string |icense, DateTime expirationDate)

{

this.license = |icense;
this.expirati onDat e = expirationDat e;

public string License

{

get{ return this.license; }

241

public DateTime ExpirationDate
{

get{ return this.expirationbDate; }

}

Because the contents of an instance of the Licenselnfo object will be serialized into the
License header, | had to indicate that the object can be serialized. | did this by decorating the

Licenselnfo class with the Serializable attribute.

Next | will add a call to the SetHeaders method of the CallContext object to add the header
to the GetFile SOAP request. Grabber.NET calls the GetFile method as a result of handling
the click event on the Copy menu item. Here is the implementation:

private void copyMenu_Click(object sender, System EventArgs e)
{
/1 Obtain the destination directory fromthe user.
DirectoryForm di rectoryForm = new Di rectoryForm();
i f(directoryForm ShowDi al og() == Di al ogResul t. OK)
{
/'l Create an instance of the SoapFil eShare.File object.

string url =
((DirectoryTreeNode) di rectoryTree. Sel ect edNode) . Url +

“"File.soap";

SoapFi | eShare.File file =
(SoapFi |l eShare. File)Activator. Get Obj ect

(typeof (SoapFil eShare.File), url);

/'l Create the Licensing SOAP header.

Header |icenseHeader = new Header ("Li censing",
this.licenselnfo,

fal se);

string destinationDirectory = directoryForm Pat h;

/1l Copy the selected files into the destination directory.
foreach(FileListViewitemfileNode in fileList. Sel ectedltens)

{
/1 Set the Licensing SOAP header.

Cal | Cont ext . Set Header s(new Header [] {licenseHeader});

/'l Obtain file contents.
byte [] fileContents = file.GetFile(fileNode. Path);

242

11,

}

/1 Parse the filename fromthe file path.
i nt index;
for(index = fil eNode. Path. Length - 1;

index > 0 && fileNode.Path[index] !'= "\\"; index--);

char [] text = new char[fil eNode. Path. Length -

fil eNode. Pat h. CopyTo(i ndex + 1, text, O,
fil eNode. Path. Length - index - 1);
string fileNanme = new string(text);

/1 Wite file to the destination directory.
Stream s;

i ndex -

s = File.OpenWite(destinationDirectory + fileNane);

s.Wite(fileContents, 0, fileContents.Length);
s. O ose();

The preceding code displays the DirectoryForm dialog box to obtain from the user the

directory to which the files should be copied. Then, for each file selected by the user, the file

is copied into the destination directory. To place the License header in each GetFile SOAP
request, | called the SetHeaders method each time just before | called the GetFile method.

The GetFile method can retrieve the SOAP header using the CallContext object’s
GetHeaders static method. Here is the implementation:

public byte[] GetFile(string fil eName)

{

Li censelnfo |icenselnfo = null;

/] Make sure the client sent valid license information.
Header [] headers = Call Cont ext. Get Headers();

for(int i =0; i < headers.Length || licenselnfo == null
{
licenselnfo = headers[i].Value as Licenselnfo;
}
if(licenselnfo !'= null)
{
/1l Validate the licensing informati on agai nst
/1l the Licensing Wb service...
}

i ++)

243

/1 The rest of the inplenmentation...

}

First the GetHeaders method is called to obtain an array of Header objects. Then the array is
iterated through until the Licensing header is found or the end of the array is reached.

Finally, if the Licensing header is found, the information is passed to the Licensing Web
service.

You should be aware of a couple of issues regarding the support for SOAP headers in
Remoting. First, as you must with ASP.NET, you have to be careful about receiving a header
containing the mustUnderstand attribute set to true. If a header that must be understood by
the Web service was not processed after the method returns, the Remoting runtime will
automatically generate an exception. So if the implementation of a method exposed by the
Web service requires compensating logic in the event of an exception being thrown, you

need to take appropriate action. Your choices would be to either verify that there are no
unsupported required headers before yau run your code or intercept the exception that
results from an unhandled required header and then execute the necessary compensation
logic.

The other issue is that supported headers will not be exposed within the WSDL that is
dynamically generated by the Remoting runtime. If it is necessary to advertise the headers
supported by the Web service, you will need to manually modify the WSDL. Two possible
options would be either to create a static WSDL document or to intercept the dynamically
generated WSDL and inject the header definitions.

Generating WSDL

One of the advantages of implementing Grabber.NET with SOAP over HTTP is that you are
not limited only to sharing files with other Grabber.NET peers. You can create an application,
potentially on other platforms, that can interact with Grabber.NET peers.

To implement a compatible Web service and proxy, you need access to the interface
definition for the various Web services that are used by Grabber.NET. As you have seen, the
WSDL describing a Remoting component hosted in IIS can be obtained by passing a query
string containing WSDL to the Web service endpoint. However, this is not available to
Remoting Web services that are hosted by processes other than IIS.

For these cases, you can use SoapSuds to generate a WSDL document to describe the

interfaces supported by the Web service. The resulting WSDL document can then be sent
directly to the developer or posted on a Web site. The following SoapSuds command

generates a WSDL document that describes both the File and the Directory Web services:
soapsuds -wsdl -types: SoapFil eShare. Di rectory, SoapFi | eShar e,

http://1ocal host/ SoapFi |l eShare/ Di rectory. soap; SoapFi | eShare. Fil e, Soa
pFi | eShar e,

http://1ocal host/ SoapFi | eShare/ Fi |l e. soap; SoneRecor dConpany. Li censel n
fo,

SoneRecor dConpany - os: SoapFi | eShar e. wsdl

Unlike ASP.NET, the SoapSuds utility allows you to create WSDL documents that describe a
Web service with multiple endpoints. The preceding command will generate a file named

24

SoapFileShare.wsdl that contains one Web service definition with two endpoints, one for the
File class and one for the Directory class.

One issue with the SoapSuds -generated WSDL documents is that there is no way of
specifying the name of the Web service. The name of the Web service defaults to the name
of the first endpoint specified by the types flag. Here is the service description within
SoapFileShare.wsdl:

<servi ce nane='DirectoryService’ >
<port nane=‘'DirectoryPort’ binding="ns0:DirectoryBinding >
<soap: address | ocation=
“http://1ocal host/ SoapFi | eShare/ Di rectory. soap’ />
</ port>
<port nane='Fil ePort’ binding='nsO: Fil eBi ndi ng’ >

<soap: addr ess
| ocation="http://Iocal host/ SoapFil eShare/ Fil e.soap’ />

</ port>

</ service>

You can modify the name of the Web service within the generated WSDL document. If the
endpoints within the document are not related, you can also wrap each endpoint within its
own service element. In this case, because File and Directory are related, | could change the
name of the service from DirectoryService to SoapFileShareService.

The types flag indicates which classes | want to have described within the WSDL document.
The classes that | want exposed as Web services also include their respective endpoints. If
the resulting WSDL document contained only one Web service definition, | could have
specified the endpoint using the se flag. (See Table 81 earlier in the chapter for a list of
command-line parameters for SoapSuds.)

You also need to list any additional types that must be represented within the schema. For

example, the Licenselnfo type is used within the License SOAP header, so | included it
within the types flag.

Suds WSDL Extension Elements

Remoting defines a set of WSDL extension elements called Suds. The Suds extension

elements are used to contain additional metadata necessary to maintain full fidelity with the
.NET platform.

The Suds extension elements appear in every Remoting-generated WSDL document. For

example, every .NET type represented within a WSDL document will have a corresponding
binding element that contains a suds:class element that describes additional information

about the .NET type (such as its root type). The following is the binding definition for the
Directory class:

<bi ndi ng nane='Di rect oryBi ndi ng’ type='ns0: DirectoryPort Type’ >
<soap: bi ndi ng styl e='rpc’
transport="http://schemas. xm soap. org/ soap/ http' />
<suds:cl ass type='ns0: Directory’ rootType=' Marshal ByRef Obj ect’ >
</ suds: cl ass>

<l-- Additional definitions... -->

</ bi ndi ng>

The Suds extension elements are proprietary to the Remoting framework, but if your Web
service does not leverage any services that extend the SOAP specification, the Suds
extension elements can be safely ignored by other Web service implementations. A Web
service developed on the Remoting framework can thus maintain a high degree of
interoperability.

Summary

Remoting is the distributed object infrastructure for .NET. Because SOAP is one of the
message formats it supports, you can use Remoting to create Web services. The primary
purpose of the Remoting framework is to serve as a distributed object infrastructure, not a
development platform for creating and consuming Web services.

In a number of scenarios, Remoting is a better choice than other technologies, such as
ASP.NET, if not the only choice. It makes sense to build Remoting Web services
applications when you need to use a transport protocol other than HTTP, when you need to
host a Web server in a process besides 1IS, and when you need strong support for NET

types.

In this chapter, you learn the difference between well-known objects and client-activated
objects. You should use wellknown objects when your Web service needs to interoperate

with clients created on other Web service dewelopment platforms.

Remoting supports two configurations for welkknown objects, singleton and single instance.
If the well-known object is configured as a singleton, all requests will be processed by the
same object. If the wellFknown object supports the single instance configuration, each
request will be processed by a new instance of the object.

Remoting Web services can be hosted in any process. This is a significant advantage for
creating Web services that are not practical to host in 1IS, such as the peer-topeer
Grabber.NET application that | implemented in this chapter.

In this chapter, | show how to create a Web service hosted in IS and another one hosted in
a WinForms process. | then explain how to consume Web services using the Remoting
platform. | show three ways to create a strongly typed proxy object: using the new operator,
using the Activator class’s static GetObject method to dynamically create a strongly typed
proxy, and using the SoapSuds utility to create a proxy from a WSDL document or a .NET
assembly.

The SoapSuds utility can create a wrapped proxy object, which provides convenient access
to some of the properties of the underlying channel object. For example, a wrapped proxy
object exposes properties that allow you to set the username and password that will be used
to authenticate the client.

The Remoting framework provides a set of tools and services for generating WSDL
documents for your Web services. A WSDL document is automatically generated for
Remoting Web services hosted in IS when you append a query string containing wsdl to the
end of the port address. You can also use the SoapSuds utility to generate a WSDL
document for a given set of .NET types. This allows a WSDL document to be produced for a
Web service hosted within a process other than IIS.

246

Remoting provides support for setting and processing SOAP headers. It offers two
mechanisms for setting SOAP headers through the CallContext object. You use the
GetHeaders and SetHeaders static methods to set and retrieve the SOAP headers for a
particular method call, and you use the GetData and SetData static methods to set and
retrieve data that will be sent within the header of the SOAP request message sent to an
object that resides within a particular context.

247

Chapter 9: Discovery Mechanisms for Web
Services

Overview

One of my main motivations for moving to Colorado several years ago was skiing, and
because getting to the nearby ski areas often requires driving over snow-packed mountain
passes, | bought an SUV.

It amazes me that the SUV that reliably gets me to my favorite ski areas all winter is
assembled from parts mostly made by companies other than the automobile manufacturer.
In fact, only about 30 percent of the parts that make up my SUV are manufactured by the
automobile manufacturer. For the remaining 70 percent of parts, the automobile
manufacturer has built up a vast network of second-tier and third-tier suppliers that feed its
just-intime inventory system.

Web services can provide considerable value to supply chain management (SCM) systems
that coordinate transactions such as those between the automobile manufacturer and its
suppliers. The automobile manufacturer can advertise via WSDL how it will electronically
submit orders to its suppliers and how it expects to receive purchase orders for the goods
received.

For example, let’s say that a supplier called Fabrikam Wing Nuts needs to obtain the WSDL
document from the automobile manufacturer called Contoso Motor Company in order to
integrate with Contoso’s SCM system. It could make a sales call to Contoso Motor Company
and obtain the URI for the WSDL documents and give Contoso the URI where the orders
should be sent. Or it could place a telephone call to Contoso to exchange the information.

But wouldn't it be nice if a vendor dd not need to have explicit conversations with Contoso in
order to learn about the Web services Contoso exposes? Wouldn't it be nice if Contoso
could locate your business when it was in desperate need of wing nuts?

Companies need a way to advertise the W eb services they support and for clients to
discover those services. In this chapter, | discuss two types of discovery mechanisms for
Web services: Universal Description, Discovery, and Integration (UDDI) and DISCO. UDDI is
a central and hierarchical directory service; DISCO promotes a more free-form browsing
model for locating Web services.

UDDI

To establish an electronic relationship with Contoso, Fabrikam Wing Nuts needs to obtain
information about the Web services that Contoso Motor Company supports. It would be ideal
if Contoso could publish the technical details in such a way that any supplier interested in
doing business with Contoso could easily obtain them.

UDDI provides a central directory service for publishing technical information about Web
services. UDDI is the result of an industry initiative backed by a significant number of
technology companies, including Microsoft, IBM, and Ariba. (You can find a full list of

participants in the UDDI initiative at http://www.uddi.org/community.html.)

UDDI is yet another example of the unprecedented level of industry cooperation around the
adoption of Web services. Many companies believed that a directory service for advertising
Web services would be crucial to Web services gaining critical mass, and they felt that the
time needed to develop the UDDI specification through a standards body was unacceptable.

248

As a result, the UDDI specification and the infrastructure required to support it were
developed cooperatively by a number of companies. Once UDDI has reached “a reasonable

level of maturity,” the project members have committed to submitting the UDDI specification
to a standards body.

UDDI Architecture

The infrastructure that supports UDDI is composed of a set of registries and registrars. A
registry contains a full copy of the UDDI directory; a registrar provides UDDI registration
services on behalf of a customer.

A registrar can be an ISP, a host of a business-to-business (B2B) marketplace, an individual

company, or the host of a registry itself. For example, Microsoft offers a registry and also
provides an HTML Ul for creating and maintaining records within the directory. Contoso

could also serve as a registrar in an effort to encourage its suppliers to register their services
within the UDDI directory.

As of this writing, Microsoft and IBM are the only two companies hosting registries. Both
Hewlett-Packard and SAP have committed to hosting additional registries.

The registries are based on a single-master replication model. A business must choose a
registry in which to maintain its information. All updates made to the directory will be
replicated to all the other registries. Then the updated information can be queried from any
registry.

The diagram below shows one user updating the UDDI business directory through a
registrar and then another user accessing the updated information.

L] [

= I = I
= —
Registrar Regestrar Ragesirar Registoar Registnar Rigsiras
.H- 7 .‘- .‘.‘.L '."a 5
.. - . I
1.\-. | ‘.-"‘-f I"--_l.‘- _.-""f
lﬂmlm I 1 Huim]

o e

UDDI API

A UDDI registry is itself a Web service. It exposes a SOAP-based API for accessing and
manipulating entries within the directory. Instead of maintaining data through a registrar, a
developer can program directly against the API.

Version 1 of the UDDI API exposes about 30 methods for interacting with a registry, all of
which behave synchronously. The following example shows how a UDDI request message is
structured:

<?xm version="1.0" encodi ng="UTF 8" ?>

<Envel ope xm ns="http://schenmas. xm soap. or g/ soap/ envel ope/ " >

249

<Body>
<find_busi ness generic="1.0" xm ns="urn:uddi-org: api">
<nanme>MyTest Busi ness</ nane>
</find_business >
</ Body>
</ Envel ope>

A UDDI message must meet some minimal requirements in order to be valid. (Some of

those required elements are shown in bold in the previous example.) They are as follows:

] The UDDI specification requires that the SOAP message be UTF-8 encoded.

. The elements within the body of the UDDI document must be scoped within the UDDI
API namespace. The UDDI APl namespace is identified by the urn:uddi-org:api URI.

] The request must contain a SOAPAction HTTP header whose value is an empty string.
Any other value will be considered an error.

] The version of the targeted APl must be stated within the body of the message using

the generic attribute.

Let’'s examine the last bullet point in more detail. As with any system, UDDI will continue to
evolve. As enhancements are made, the API will have to be modified to expose the new
functionality. As of this writing, version 2 of the APl has completed the review process, has
been ratified by the UDDI.org members, and is currently being implemented. To avoid
breaking existing clients, the UDDI organization devised a versioning system to maintain
some degree of backward compatibility.

The version of the API is referred to as its generic. Every UDDI message, including request
and response messages, must indicate which generic it targets. Its generic attribute
indicates the version number of the targeted API within the root element of the SOAP body.

The registry is responsible for supporting the current as well as the previous generic. The
registry must also support generic version 1.

The UDDI API methods can be divided into two categories: the inquiry methods and the
publishing methods. The inquiry methods allow you to search and browse the directory, and
the publishing methods allow you to modify the contents of the directory. The messages for
the inquiry methods have a root element in the SOAP body prefixed by find_ or get_. With a
couple of exceptions, the messages for the publishing methods have a root element in the
body of the SOAP message prefixed by save_ or delete_.

The technical specification for the UDDI APl is published as a WSDL document as well as
an XML Schema document. The XML Schema version is located at

http://mww.uddi.org/schema/2001/uddi_vl1.xsd The WSDL document for the Inquiry API is

located at http://www.uddi.org/wsdl/inquire_v1.wsdl, and the WSDL document for the Publish
APl is at http://www.uddi.org/wsdl/publish_v1.wsdl. Table 9-1 describes the inquiry methods.

Table 9-1: UDDI API Inquiry Methods

Message Description

find_binding Searches for bindingTemplate entities that match a specified
set of criteria

find_business Searches for businessEntity entities that match a specified set
of criteria

find_service Searches for businessService entities that match a specified

set of criteria

Table 9-1: UDDI API Inquiry Methods

| Message | Description

find_tModel Searches for tModel entities that match a specified set of
criteria

| get_bindingDetail | Obtains one or more specific bindingTemplate entities

| get_businessDetail | Obtains one or more specific businessEntity entities

get_businessDetailExt Obtains one or more specific businessEntityExt entities from a

registry that may support additional attributes

| get_serviceDetalil | Obtains one or more specific businessService entities

| get_tModelDetail | Obtains one or more specific tModel entities

The find_ methods are for general searches, and the get_ methods are for obtaining detailed
information about a particular record. Table 9-2 describes the publishing methods.

Table 9-2: UDDI API Publishing Methods

| Message ‘ Description

| delete_binding ‘ Deletes one or more specified bindingTemplate entities

| delete_business ‘ Deletes one or more specified businessEntity entities

| delete_service ‘ Deletes one or more specified businessService entities

| delete_tModel ‘ Deletes one or more specified tModel entities

| discard_authToken ’ Invalidates the previously obtained authentication token

| get_authToken ‘ Obtains an authentication token for the user

get_registeredinfo ‘ Obtains a list of businessinfoand tModelinfo entities for a
particular user

| save_binding ‘ Saves one or more bindingTemplate entities

| save_business ‘ Saves one or more businessEntity entities

| save_service ‘ Saves one or more businessService entities

| save_tModel ‘ Saves one or more tModel entities

As | said before, the publishing methods are responsible for manipulating data within the
directory. Both creates and updates are handled by the save_messages. When a record is
created using a save_ method, the registry generates a unique identifier. The unique

identifier is then passed to subsequent save_ method calls to update the record. Each save_
message has a corresponding delete_ message for deletes.

The modifications made using the publishing methods must be done in a secure fashion.
The UDDI specification states that all publishing messages must be exchanged between the

client and the server over HTTPS. This prevents the contents of the message from being
modified during transit.

A UDDI registry allows you to modify and delete only your own records, so you must include

an authentication token with each request to prove your identity. This token is passed as part
of the method signature of the save_ and delete_ methods.

il

You obtain an authentication token by passing your credentials to the get_authToken
method. The implementation details of how a registry creates an authentication token are left
up to the registry. The Microsoft registry uses Passport to authenticate its users. You pass a
valid set of Passport credentials for a registered user, and the registry passes back a valid
Passport token.

The methods defined by the UDDI API rely on a whole host of data structures. | discuss a
number of them in the course of this chapter. You can find the entire list of data structures
discussed in detail in the document titled “UDDI Programmer’s API 1.0,” which is posted in

various formats at www.uddi.org.
UDDI SDK

Microsoft provides a UDDI SDK for developing UDDI-enabled applications. The UDDI SDK

includes both a .NET and a COM-based object model for simplifying interaction with the
registry. It also includes a standalone UDDI registry for development purposes.

As of this writing, the UDDI SDK is still in beta and is distributed as a separate download.
Microsoft currently does not have plans to ship the release to manufacture (RTM) version of
the SDK in conjunction with the .NET Framework. Instead, it plans to ship the RTM version

of the UDDI .NET object model on a release schedule separate from that of the .NET
Framework.

UDDI .NET Object Model

The UDDI .NET object model includes a set of types that encapsulate the various methods
and data structures defined by the UDDI specification. Unlike in other object models, in
UDDI every method is represented by a corresponding .NET type. The type’s name
corresponds to the name of the method. To conform to the de facto standard naming
convention, the .NET types are Pascal cased with the underscores removed. For example,
the find_business method has a corresponding FindBusiness .NET type.

The .NET type exposes properties for setting parameters to be sent to the UDDI registry.
Each .NET type also exposes a Send method to invoke its corresponding UDDI method.
This might sound confusing, but it is fairly straightforward once you get the hang of it.

Similar mapping is provided for the entity datatypes defined by the UDDI API. For example,

one of the datatypes | will introduce shortly is businessEntity. The .NET object model
contains a corresponding BusinessEntity .NET type.

UDDI Developer Edition

Another useful tool that ships with the UDDI SDK is the UDDI Developer Edition, a registry

you can install on your local machine. It supports all version 1 interfaces and can be an
invaluable resource for testing.

The sample code presented in this chapter targets the locally installed UDDI Developer
Edition registry. Here is the necessary information for interfacing with the registry:

. Publish URI http://localhost/publish.asmx

. Inquiry URI http://localhost/inquire.asmx

" User Name udditest

" Password Blank password

The UDDI SDK ships with a couple of sample applications that you can use to administer the

UDDI registry. Only the source code is provided, so you must compile the applications

before you can use them. The applications are

. UDDIExplorer A simple Ul for performing basic searches for businessEntity or tModel
entries (described in the upcoming section)

. UDDIPublish Migrates your entries from one UDDI registry to another

. UDDIRegClean Removes all entries for a particular user

Because the UDDI Developer Edition supports only one user, UDDIRegClean is helpful for
clearing all entries within the registry. UDDIPublishis useful when you want to copy the
entries from a public registry and then perform testing against that data in a local
environment.

UDDI Enterprise Server

Companies often need to discover services that are internal to the organization and not on
the Internet. For example, a developer writing a reporting system for the sales department
might be interested in learning what services the finance department exposes.

Practically every distributed object infrastructure provides a means of resolving the location
of a particular component. The Service Control Manager provides this service for DCOM,
and the Object Request Broker provides this service for CORBA. However, you can make a
strong argument that UDDI is more robust and open than either the Service Control Manager
or the Object Request Broker.

We need a corporate UDDI registry where internal services can be published. The UDDI
Developer Edition was never intended to fill this role, so Windows .NET Server will feature
native UDDI services that can be used to host a UDDI directory that is internal to a
corporation.

UDDI services that ship with Windows .NET will have tight integration with the Active
Directory as well as Windows security. When installed in an enterprise running Active
Directory, the UDDI services will register themselves within Active Directory so that they can
be easily discovered. The UDDI directory also supports integrated Windows security and can
facilitate single sign-on via NT Challenge/Response. Finally, the UDDI services support role-
based security and define three roles by default: Reader, Publisher, and Administrator.
Check the MSDN UDDI Web site at http://msdn.microsoft.com/uddi for more information.

Registering the Purchaser

For Fabrikam to discover how to conduct electronic business with Contoso, Contoso must
publish the necessary information to UDDI—including information about the Web services it
exposes and the technical specifications they adhere to. In the process of registering
Contoso, | will create and populate instances of six major UDDI datatypes:

= BusinessEntity Defines the business itself

" Contact Contains information about a point of contact for the businessEntity

" BusinessService Contains information about a collection of services

" BindingTemplate Contains information about an entry point to a service

. TModelinstancelnfo Serves as a cross-reference to a particular tModel

. TModel Defines a particular specification for a service

Of the six types, the UDDI API provides methods for finding and creating four datatypes:
businessEntity, businessService, bindingTemplate, and tModel. Instances of the other two
datatypes are published using the save_ method of its parent. The following diagram shows
how the datatypes relate to each other.

hemnassEnity - Pl

____,_.--""':_ -.:"""---.__h .-'"..
-
busiiadalevece comecl
o
J“'
T T I =k
lil
- ..'l'
/.

DbnangTamglate a

T T i
I“I..

Whoctmlistancaei

|

In the next section, | walk through the implementation of a simple console application that
Contoso Motor Company can use to register itself in the UDDI directory.

Registering the Technical Specifications

First | need to register the technical specifications for the Invoice and the PurchaseOrder
Web services. Note that UDDI is not responsible for holding the technical specification—it
only provides a reference to the specification. You are responsible for making the
specification available using some other means. This can be as simple as posting the
specification on a Web site or publishing it within a repository such as BizTalk.org or
RosettaNet.

The reference to the specification is contained within a tModel. A tModel is used to identify
any unigue abstract concept. For example, a tModel can serve as a reference pointer to a
particular technical specification or it can be used to define a particular taxonomy. | will talk
about how tModel entities are used to define taxonomies when | register the supplier.

Contoso needs to register two technical specifications, so it must define two tModel entities
within the UDDI registry—one for how purchase orders will be issued to the supplier, and
one for how the resulting invoice for goods shipped will be submitted back to Contoso.

How a specification is actually defined is irrelevant to UDDI because it is addressable via a
URI. Because the tModel referencing the specification can be referenced by more than one
service, the specification should not contain information specific to one instance of that
service. Because both of Contoso’s specifications define Web services, expressing the
specifications in WSDL is a natural choice. In an effort to maximize reusability, you might
want to ensure that the WSDL document does not contain information specific to a particular
instance of the Web service.

Recall from Chapter 5 that a WSDL document contains one or more service sections. A
service section contains port definitions that specify the endpoint of the Web service.
Because a specification registered in UDDI should not contain information that is specific to

one implementation, you should remove any service sections from the WSDL document
before publishing it in UDDI.

Let's assume that both the Invoice and the PurchaseOrder WSDL documents were
autogenerated by the ASP.NET runtime. In preparation for registering the Invoice and
PurchaseOrder specifications with UDDI, | need to make a copy of the WSDL documents
and remove the service sections from them. Then | need to publish them on Contoso’s Web
site so that they can be resolvable via a URI.

Here is the code to register tModel objects for the PurchaseOrder and Invoice Web services:
usi ng System

usi ng M crosoft. Uddi. Api;

using Mcrosoft. Uddi;

usi ng M crosoft. Uddi . Busi ness;

using Mcrosoft. Uddi. Servi ceType;

usi ng M crosoft. Uddi. Servi ce;

usi ng M crosoft. Uddi . Bi ndi ng;

class Application

{
static void Main(string[] args)
{
/1l Initialize the publisher paraneters.
Publish. Ul = "http://local host/uddi/publish.asnx";
Publ i sh. User = "udditest";

Publ i sh. Password = "";

In the code, | reference various namespaces defined by the UDDI SDK. Note that you must
add a reference to Microsoft.Uddi.Sdk.dll in order to reference the UDDI .NET types within

your application.

Next | initialize the publisher parameters, including the URI, username, and password, by

setting the associated static properties of the Publisher object. The static properties are
accessed by all of the UDDI .NET types that encapsulate UDDI method calls.

Because the static properties of the Publish class are shared, you must alter the properties

before you publish to another registry. This requirement can be challenging, especially in a
multithreaded environment. In addition, it prevents the system from caching multiple HTTP
1.1 connections on your behalf. (Future releases of the SDK will provide better support for
publishing to multiple registries.)

// EEE R R SR EEREEEEEEEEEEERESEEEEREEEEEERESEREEEEEEREESEEEEEEEEEEESEESEEEESSES

/'l * Register tMddels for Invoice and PurchaseOrder Wb services.

// EEEE R SR EEEEEEE SRR EEEEEEEREEEEEEREEREEEEEEEEREESEREEREESEESEERESEEESEEEERESSES

SaveTModel saveTModel = new SaveTMbdel ();

Next | create an instance of the SaveTModel class. This class lets you easily create a well-
formed save_tModel message and submit it to the registry.

/'l Create tModel for the supplier invoice.

saveTMbdel . TModel s. Add() ;

The SaveTModel type exposes a TModels property that contains a collection of tModel
entities to be saved to the registry. In the preceding code, | call the Add method to create a
new tModel for the Invoice Web service.

Next | set properties of the tModel, including its name, a description, the overview document,
and category information. The tModel name can be any combination of up to 128 characters.
In this case, | use a URI syntax to ensure that the name is unique.

saveTMbdel . TModel s[0] . Nane = "www cont oso- com | nvoi ce";

Next | give the tModel a user-friendly description. The description is accompanied by code
that specifies the targeted language, in this case en for English. You can find a full list of

codes at

"Defines the interface for accepting invoices from suppliers.");

Whenever a UDDI datatype allows you to set a description, the datatype can contain more
than one description element. However, only one description element for a particular
language code should appear within an instance of a UDDI datatype, as shown here:

saveTModel . TMbdel s[0] . Over vi ewDoc. Over vi ewURL =
"http://ww. contoso. com | nvoi ce. wsdl ";

saveTModel . TMbdel s[0] . Over vi ewDoc. Descri pti ons. Add("en",
"The WSDL docunent describing the Invoice Wb service.");

Next | specify the overview document. In this case, it is the URI to the edited version of the
WSDL document that is automatically generated by the .NET platform.

/| Categorize the tMdel.
saveTModel . TMbdel s[0] . Cat egor yBag. Add("uddi - org: types", "wsdl Spec",
"uui d: clacf 26d- 9672- 4404-9d70- 39b756e62ab4");

Finally | add data to the tModel entity’s category bag. The category bag is intended to

contain metadata used to find specific tModel objects. For example, the Visual Studio .NET
Add Web Reference Wizard will present only tModel entities that reference the wsdISpec
category.

A tModel can also contain an identifier bag. An identifier bag contains additional user-
configurable identification numbers, which can be used as search parameters of the

find_tModel method.

Three additional properties are exposed by the tModel object: Operator, AuthorizedName,

and TModelKey. These properties are assigned by the registry when you publish a new
tModel and therefore should be left blank when you create a new tModel.

The Operator property contains data indicating which registry holds the master copy of the

tModel. The AuthorizedName property contains an identifier of the user that owns the record.
The TModelKey property contains a unique identifier given to the record by the registry.

Future versions of UDDI might allow you to provide your own more meaningful unique
identifier.

Next | create a tModel for the PurchaseOrder Web service.
/'l Create tMddel for the purchase order.

saveTMbdel . TModel s. Add() ;
saveTMbdel . TModel s[1] . Nane = "www cont 0oso- com Pur chaseOr der”;

saveTModel . TMbdel s[1] . Descri pti ons. Add("en",

"Defines the interface for sending invoices to suppliers.");
saveTModel . TMbdel s[1] . Over vi ewDoc. Overvi ewJRL =

"http://ww. contoso. com PurchaseOrder. wsdl";

saveTMbdel . TMbdel s[1] . Over vi ewDoc. Descri pti ons. Add("en", "The WSDL
docunent des

cribing the PurchaseOrder Wb service exposed by the supplier.");
saveTModel . TMbdel s[1] . Cat egor yBag. Add(" uddi -

org:types", "wsdl Spec", "uuid:clacf26d-9672-4404-9d70-
39b756e62ab4") ;

Recall that | need to describe how a supplier interacts with Contoso. This interaction involves
both the PurchaseOrder and the Invoice Web services. However, up to this point the Web
services are described in isolation. | need to define the workflow that incorporates both of
these Web services.

tModel entities are not limited to specifying a particular Web service. You can use them to
represent other specifications, such as transport protocols and even workflows. However,

UDDI has not standardized how a tModel referencing a workflow should be published. One
limiting factor is the current lack of a standard for defining workflow.

Microsoft currently supports XLANG for expressing workflow. XLANG is an XML dialect

generated by a technology called Orchestration. Orchestration currently ships only with
Microsoft BizTalk Server. However, this technology has broader appeal, especially for Web

services.

If your business partners can consume XLANG, it is a good way to represent workflow.
However, if you need broader reach, you can opt for something as simple as an HTML
document that describes the workflow in written form. For this example, the following code
creates a tModel that references an HTML document:

/'l Create tMdel for the supplier workflow.
saveTMbdel . TModel s. Add() ;
saveTMbdel . TModel s[2] . Nanme = "www cont 0oso- com Pur chasi ngWor kf | ow';

saveTMbdel . TMbdel s[2] . Descri ptions. Add("en", "Defines the workflow
for

e- comrer ce transacti ons between the purchaser and its suppliers.”);
saveTMbdel . TMbdel s[2] . Over vi ewDoc. Over vi ewURL =
"“http://ww. cont oso. com’ Pur chasi ngWor kf | ow. ht m *;

saveTModel . TMbdel s[2] . Overvi ewDoc. Descri pti ons. Add("en", "This
docunent describ

es the workfl ow enconpassin g the PurchaseOrder and |nvoice Wb
service.");
The preceding code defines a tModel that references the workflow describing how Contoso

conducts a transaction with one of its suppliers. The details of the transaction are outlined in
the PurchasingWorkflow.html document.

Once | define the tModel objects, the final step is to save them to the UDDI registry.

/'l Save the newy defined tMdel entities.

Consol e. Wi teLi ne("The save_t Model nmessage sent to the registry:");
Consol e. WitelLine(saveTMWodel . ToString());

TModel Det ai | savedTModel Detail = saveTMddel . Send();

Consol e. WiteLine

("\'nThe resulting tMdel Detail message received fromthe
registry:");

Consol e. WitelLine(savedTModel Detail . ToString());

Finally | use the Send method to submit the newly defined tModel entities to the registry and
receive the resulting tModelDetail. The tModelDetail contains all the information about the
tModel, including the properties populated by the UDDI registry. One of these properties, the
unique identifier assigned to the Invoice tModel, will be referenced when | register Contoso’s
instance of this service.

The ToString method of the UDDI object model classes is overloaded to output the
corresponding UDDI XML message. | use the ToString method to write both the

save_tModel and the resulting tModelDetail messages to the console. The console output is
shown here:

The save_t Model nessage sent to the registry:
<?xm version="1.0""?7>
<save_t Mbdel xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-

i nstance" xm ns:xsd="http://ww. w3. org/ 2001/ XM.Schem"
generic="1.0"

xm ns="ur n: uddi - org: api ">
<t Model t Model Key="">
<name>wWw\ cont oso- cont | nvoi ce</ name>

<description xml:|lang="en">Defines the interface for accepting
i nvoi ces from

suppliers. </ description>
<overvi ewDoc>

<description xm:|lang="en">The WSDL docunent describing the
I nvoi ce Wb

service. </ description>

<overvi ewURL>ht t p: / / ww. cont 0so. cont | nvoi ce. wsdl </ over vi ewURL>
</ overvi ewDoc>
<cat egor yBag>

<keyedRef er ence t Model Key="uui d: clacf26d- 9672- 4404-9d70-
39b756e62ab4"

keyName="uddi - org: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>
</t Model >
<t Model t Model Key="">
<name>ww+ cont oso- com Pur chaseOr der </ nanme>

<description xm :lang="en">Defines the interface for sending a
pur chase

order to a supplier.</description>
<overvi ewDoc>

<description xm:|lang="en">The WSDL docunent describing the
Pur chaseOr der

Web service exposed by the supplier.</description>

<overvi ewURL>htt p: // www. cont 0so. conl Pur chaseOr der . wsdl </ over vi ewJRL>
</ overvi ewDoc>
<cat egor yBag>

<keyedRef er ence t Model Key="uui d: clacf 26d- 9672- 4404-9d70-
39b756e62ab4"

keyName="uddi - org: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>
</t Model >
<t Model t Model Key="">
<name>ww\ cont oso- com Pur chasi ngWor kf | ow</ nane>

<description xm :lang="en">Defi nes the workflow for e-comrerce
transacti ons

bet ween the purchaser and its suppliers.</description>
<overvi ewDoc>

<description xnl:|lang="en">Thi s docunment describes the
wor kf | ow

enconpassi ng the PurchaseOrder and | nvoice Wb
service. </ description>

<overvi ewURL>ht t p: / / ww. cont 0so. conf Pur chasi ngWor kf | ow. ht m </ overvi e
WURL >

</ overvi ewboc>
</ t Model >
</ save_t Mbdel >

The resulting tMdel Detail nmessage received fromthe registry:
<?xm version="1.0"?>
<t Model Detai | xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma-

i nstance” xm ns: xsd="http://ww. w3. org/ 2001/ XM.Schem"
generic="1.0"

operator="M crosoft UDDI Devel oper Edition Test Operator"
truncated="fal se" xnl

ns="urn: uddi -org: api ">
<t Mbdel t Mbdel Key="uui d: a89493a6- d0d0- 415b-8c41- a34caf 8c6c43"
operator="M crosoft UDDlI Devel oper Edition Test Operator">

<nanme>wWww cont oso- cont | nvoi ce</ nane>

<description xm :lang="en">Defines the interface for accepting
i nvoi ces from

suppl i ers. </ description>
<overvi ewDoc>

<description xm :lang="en">The WSDL docunent descri bing the
I nvoi ce Wb

service. </ description>

<overvi ewUJRL>ht t p: / / www. cont 0so. cont | nvoi ce. wsdl </ over vi ewUJRL>
</ overvi ewbDoc>
<cat egor yBag>

<keyedRef erence t Mbdel Key="uui d: clacf 26d- 9672- 4404-9d70-
39b756e62ab4"

keyName="uddi - org: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>
</t Model >
<t Model tMddel Key="uui d: 2a1109f f - 5d31- 4df 1- 86f 6- b8f cf f 797030"
operator="M crosoft UDDI Devel oper Edition Test Operator">
<name>ww\+ cont oso- com Pur chaseOr der </ nanme>

<description xm :lang="en">Defines the interface for sending a
pur chase

order to a supplier.</description>
<overvi ewDoc>

<description xm: |l ang="en">The WSDL docunent describing the
Pur chaseOr der

Web service exposed by the supplier.</description>

<overvi ewURL>htt p: // www. cont 0so. conl Pur chaseOr der . wsdl </ over vi ewJRL>
</ overvi ewDoc>
<cat egor yBag>

<keyedRef er ence t Model Key="uui d: clacf 26d- 9672- 4404-9d70-
39b756e62ab4"

keyName="uddi - org: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>
</t Mbdel >
<t Model t Model Key="uui d: b31cff85-8blb-4502-bcel- 92229f 579238"
operator="M crosoft UDDI Devel oper Edition Test Operator">
<nanme>wWww cont oso- com Pur chasi ngWor kf | ow</ nanme>

<description xm :lang="en">Defi nes the workflow for e-comrerce
transactions

bet ween the purchaser and its suppliers.</description>
<overvi ewDoc>

<description xm :lang="en">This docunent describes the
wor kf | ow

enconpassi ng the PurchaseOrder and | nvoice Wb
service. </ description>

<overvi ewURL>htt p: // ww. cont oso. com Pur chasi ngWor kf | ow. ht m </ overvi e
WURL >
</ overvi ewDoc>

</ t Model >
</t Model Det ai | >

Registering Contoso Motor Company

Now that | have published the technical specifications necessary to facilitate communication
between a purchaser and its suppliers, the next step is to register the purchaser. The UDDI
entry for Contoso Motor Company will contain basic contact information as well as
information about the Invoice Web service it exposes.

Information relating to a specific company is contained within a businessEntity datatype. This
includes general information such as the company’s address and phone number as well as
technical information about the Web services it exposes.

The following code creates a businessEntity and publishes it to the registry using the
save_business method:

// IR R R RS R RS R E R RS SRR R RS R R E SRR R RS R EE R R EEREEEEEEREEEEEEEEEEREESEEESESE]

/'l * Register businessiEntity for Contoso Mdtor Conpany.

// khkkhkkhkhkhkhkhkhhkhkhhkhhhkhkhhhhkhdhhhhdhdhhhhdhddhhdhdkdrhhdhdddhkhd * *rd*xhk *k,*k*x*x%

SaveBusi ness saveBusi ness = new SaveBusi ness();

Busi nessEntity contoso = new Busi nessEntity();
saveBusi ness. Busi nessEntiti es. Add(cont 0so);

cont oso. Nanme = "Contoso Mt or Conpany”;

cont 0oso. Descri ptions. Add("en",

"Striving to make the world a better place. (TM");

| first create an object of type BusinessEntity and set its name and description. Unlike the
previous code that created a tModel, | explicitly create an instance of the BusinessEntity

class instead of implicitly creating one using the SaveBusiness.Add method. | did this to

avoid requiring 24-inch-wide paper stock to print this section.

Because the businessEntity contains such a wide array of information, it defines a fairly deep
hierarchy of nested datatypes. If | were to access the properties of the nested objects by
navigating through an object of type SaveBusiness, my code would quickly become
unwieldy.

Next | create a contact record and add it to the businessEntity. The PersonName property
contains the contact’s full name, and the UseType property contains an optional free-form

text field that identifies the type of contact.
/1 Add primary contact information to the businessEntity.

21

Contact primaryContact = new Contact();
busi nessEntity. Contacts. Add(pri maryCont act);

pri maryCont act. PersonNane = "Janes Snith";

pri maryContact. UseType = "primary contact”;

pri maryCont act . Descri ptions. Add("en", "Primry Contact");

pri mar yCont act . Phones. Add(" 800- 555-0123", "main");

pri maryContact. Emai | s. Add("j ames@ont oso. cont', "main");

pri maryCont act . Addr esses. Add(" 1", "office");

pri maryCont act . Addresses[0] . Addr essLi nes. Add("P. O. Box 1234");

pri maryCont act . Addr esses[0] . Addr essLi nes. Add(" Dearborn, M 56789");

busi nessEntity. Contacts. Add(pri maryCont act);

| set a similar UseType property for the phone number, email address, and physical

address. However, note that the UseType field of the phone number and e-mail address is
not optional if more than one phone number or e-mail address is listed.

Note that the order of the address lines is significant. The registry will always return the
address lines in the order in which they were originally saved.

Next | add a new businessService that describes a collection of Web services that enable
Contoso’s SCM process. A businessService describes a set of Web services used to solve a

particular business problem. In this case, the businessService contains a single entry for the
Invoice Web service.

/1 Add a businessService for the Wb services related to SCM
Busi nessServi ce scnServi ce = new Busi nessService();

cont 0so. Busi nessServi ces. Add(scnfSer vi ce) ;

scnBServi ce. Nane = "Supply Chain Managenent Wb Services";
scnBervi ce. Descri ptions. Add("en",

"Web services for conducting e-comerce with suppliers.”);

The UDDI API also provides the save_businessService method for directly publishing a new
businessService. This is encapsulated by the SaveBusinessService type in the .NET UDDI
SDK.

If you use the SaveBusinessService type to create a new businessService, the BusinessKey
property must point to a valid businessEntity. However, in this case the new businessService

is nested within its parent businessEntity and can therefore have a blank BusinessKey
property.

Finally, the businessService contains a category bag. Similar to the category bag exposed
by the businessEntity, it categorizes a collection of services exposed by the
businessService, as shown here:

/1 Add a bindi ngTenplate for the |Invoice Wb service.
Bi ndi ngTenpl at e i nvoi ceBi ndi ng = new Bi ndi ngTenpl ate();
scnBer vi ce. Bi ndi ngTenpl at es. Add(i nvoi ceBi ndi ng) ;

i nvoi ceBi ndi ng. Descri ptions. Add("en", "This tenpl ate describes the
t echni cal

speci fications you rmust conply with in order to submt invoices to
Cont 0so. ");

i nvoi ceBi ndi ng. AccessPoi nt. Text = "http://contoso.conllnvoice. asnx";
i nvoi ceBi ndi ng. AccessPoi nt. URLType = URLTypeEnum Htt p;

Next | add a bindingTemplate for the Invoice Web service. The bindingTemplate defines a
specific endpoint for a Web service. The URI of the endpoint is specified by the AccessPoint
property.

Instead of specifying an endpoint, a bindingTemplate can reference another

bindingTemplate. You can accomplish this by setting the HostingRedirector property equal to
the UUID of another binding template. If the HostingRedirector property is set, the client

must obtain the URI of the endpoint from the referenced bindingTemplate.

As with the businessService, you can use an instance of the .NET UDDI SDK
SaveBindingTemplate type to publish a new bindingTemplate to the registry. If you do this,
the ServiceKey property must contain a valid reference to its parent businessService, as
shown here:

/1 Add t Model I nstancel nfo for Invoice.
TModel | nst ancel nfo i nvoi ce = new TModel | nst ancel nfo();
i nvoi ceBi ndi ng. TModel | nst anceDet ai | . TMbdel | nst ancel nf os. Add(i nvoi ce)

i nvoi ce. TModel Key = savedTModel Det ai | . TModel s[0] . TModel Key;
i nvoi ce. Descri ptions. Add("en",

"The submtted invoice nust be a result of receiving a PO from
Cont 0so. ");

i nvoi ce. I nstanceDetai | . Descri ptions. Add("en",
"The WSDL docunent for this instance of the Invoice Wb service.");
i nvoi ce. I nstanceDetail. Overvi ewDoc. Overvi ewJRL =

"http://contoso.conm | nvoi ce. asnmx?wsdl ";

i nvoi ce. I nstanceDet ai |l . Overvi ewDoc. Descri ptions. Add("en", "Sone
description.");

Next | add a tModellnstancelnfo to the bindingTemplate. The tModelinstancelnfo references
a particular tModel in which the endpoint described by the parent bindingTemplate claims
compliance.

Recall that the WSDL document referenced by the Invoice Web service tModel does not
contain information specific to any one instance of a Web service. Many toolsets, including
the ones provided by .NET, require a complete WSDL document in order to generate a fully
functional proxy. Therefore, the tModellnstancelnfo datatype contains a reference to the
WSDL document that imports the interface definitions and defines the implementation-
specific service element.

In this case, | referenced the WSDL automatically generated by ASP.NET. The WSDL
document imports the original interface definitions using the WebBindingService attribute.
(See Chapter 5 for more information.)

The tModellnstancelnfo contains a reference to a document that describes the specifics
about the implementation of a particular tModel. The documentation might be for
programmatic consumption—a WSDL document, for example. Or it might have a more user-

friendly form, such as an HTML or a Word document. The document can be used to
describe instance-specific details such as security and account registration.

The UDDI organization is currently defining best practices regarding the use of the
tModellnstancelnfo. Check the UDDI Best Practices Web site at
http://www.uddi.org/bestpractices.html for more information.

Next | add another tModellnstance that references the workflow.
/1 Add tModel Instancelnfo for SupplierWrkfl ow
TModel | nst ancel nfo wor kfl ow = new TModel | nst ancel nfo();

i nvoi ceBi ndi ng. TModel | nst anceDet ai | . TModel | nst ancel nf os. Add(wor kf | ow

)

wor kf | ow. TMbdel Key = savedTModel Det ai | . TModel s[2] . TModel Key;
wor kf | ow. Descri pti ons. Add("en", "This docunent describes the
wor kf | ow

enconpassi ng the PurchaseOrder and Invoice Wb service.");

For this tModellnstancelnfo, | have decided to not publish information about the tModel that
is specific to the implementation, so | don't include a tModellnstancelnfo.

Consol e. WiteLi ne("The save_Busi ness nessage sent to the
registry:");

Consol e. Wi telLi ne(saveBusi ness. ToString());
Busi nessDetai|l businessDetail = saveBusiness. Send();
Consol e. WiteLine

("The resulting businessDetail nessage received fromthe
registry:");
Consol e. WiteLine(businessDetail.ToString());

Finally | publish the businessEntity to the UDDI registry by calling the Send method of the
saveBusiness object. As in the tModel example, | output the messages sent between the
client and the registry to the console. Here is the resulting message sent to the UDDI registry

and the response from the registry:
The save_Busi ness message sent to the registry:

<?xm version="1.0"?>
<save_busi ness xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-

i nstance"” xml ns: xsd="http://ww.w3. org/ 2001/ XM.Schem"
generic="1.0"

xm ns="ur n: uddi - org: api ">
<busi nessEntity busi nessKey="">
<name>Cont oso Mot or Conpany</nane>

<description xm:lang="en">Striving to make the world a better
pl ace. (TM
</ descri ption>

<contact s>
<contact useType="primary contact">
<description xm:lang="en">Primary Contact</description>

<per sonNanme>James Sm t h</ per sonNanme>
<phone useType="mai n">800- 555- 0123</ phone>
<emai | useType="nmi n">j ames@ont 0so. conk/ emai | >
<address sortCode="1" useType="office">
<addr essLi ne>P. O. Box 1234</addressLi ne>
<addr essLi ne>Dear born, M 56789</ addr essLi ne>
</ addr ess>
</ cont act >
</ cont act s>
<busi nessServi ces>
<busi nessServi ce servi ceKey="" busi nessKey="">
<name>Pur chasi ng Web Servi ces</ name>
<description xm :|lang="en">

Web services for conducting purchasing rel ated
transactions. </ descri pti on>

<bi ndi ngTenpl at es>
<bi ndi ngTenpl ate servi ceKey="" bi ndi ngKey="">
<description xm :lang="en">

The Web service for submitting invoices to
Cont oso. </ descri pti on>

<accessPoi nt URLType="http">
http://contoso. coni | nvoi ce. asnmx</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nf o t Mbdel Key=
"uui d: a89493a6-d0d0- 415b- 8c41- a34caf 8c6c43" >
<description xm :lang="en">The subnitted i nvoi ce must
be a result
of receiving a PO from Contoso
(www- cont oso- com Suppl i erlnvoice).</description>
<i nstanceDet ai | s>
<description xm:lang="en">The WSDL docunent for
this
i nstance of the Invoice Wb service. </description>
<over vi ewbDoc>

<description xm :lang="en">Sone
description. </ description>

<overvi ewdRL>ht t p: // cont 0so. conf | nvoi ce. asnx?wsdl
</ overvi ewJRL>
</ overvi ewboc>
</instanceDetail s>

</ t Mbdel | nst ancel nf o>

<t Model | nst ancel nfo t Model Key=
"uui d: b31cff 85-8blb- 4502- bcel- 92229f 579238" >

<description xm :lang="en">This docunment describes the
wor kf | ow

enconpassi ng the PurchaseOrder and Invoice Wb
servi ce.

</ description>
<i nstanceDet ai | s>
<overvi ewbDoc />
</instanceDet ai |l s>
</t Mbdel | nst ancel nf o>
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>
</ busi nessServi ces>
</ busi nessEntity>
</ save_busi ness>

The resulting businessDetail nessage received fromthe registry:
<?xm version="1.0"?>
<busi nessDetail xml ns:xsi="http://ww. w3.org/ 2001/ XM_Schena-

i nstance" xm ns:xsd="http://ww. w3. org/ 2001/ XM.Schem"
generic="1.0"

operator="M crosoft UDDI Devel oper Edition Test Operator"
truncat ed="fal se"

xm ns="urn: uddi - org: api ">
<busi nessEntity busi nessKey="ac5782d8- d69b-4402- 9262- caf 189536c89"
operator="M crosoft UDDI Devel oper Edition Test Operator">
<di scover yURLs>
<di scover yURL useType="busi nessEntity">
http://1ocal host/uddi/di scovery. ashx?busi nessKey=
ac5782d8- d69b- 4402-9262- caf 189536¢c89</ di scover yURL>
</ di scover yURLs>
<nane>Cont oso Mot or Conpany</ nane>

<description xm:lang="en">Striving to make the world a better
pl ace. (TM
</ descri ption>

<cont act s>
<cont act useType="prinmary contact">
<description xm:lang="en">Pri mary Contact</description>

<per sonNanme>James Sm t h</ per sonNanme>
<phone useType="mai n">800- 555- 0123</ phone>
<emai | useType="nai n">j anes@ont 0so. conk/ emai | >
<address sortCode="1" useType="office">
<addr essLi ne>P. O. Box 1234</addressLi ne>
<addr essLi ne>Dear born, M 56789</ addr essLi ne>
</ addr ess>
</ cont act >
</ cont act s>
<busi nessServi ces>

<busi nessServi ce servi ceKey="eb5ae9f 03- 585b- 4f ee- 8a89-
5d29f 0079b02"

busi nessKey="ac5782d8- d69b-4402- 9262- caf 189536¢c89" >
<nanme>Pur chasi ng Wb Servi ces</ nane>

<description xm:|lang="en">Web services for conducting
pur chasi ng

rel ated transactions. </ description>
<bi ndi ngTenpl at es>

<bi ndi ngTenpl ate servi ceKey="e5ae9f 03- 585b- 4f ee- 8a89-
5d29f 0079b02"

bi ndi ngKey="f 9cf eb33-4b83- 4cc5-9cd4- d332160530c0" >
<description xm :lang="en">

The Web service for submitting invoices to
Cont oso. </ descri pti on>

<accessPoi nt URLType="http">
http://contoso. coni | nvoi ce. asnmx</ accessPoi nt >
<t Mbdel | nst anceDet ai | s>

<t Model | nst ancel nf o t Mbdel Key=

"uui d: a89493a6-d0d0- 415b- 8c41- a34caf 8¢c6c43" >

<description xm:lang="en">The submitted invoi ce nust
be a result

of receiving a PO from Cont oso
(www- cont oso- com Supplierlnvoice).</description>
<i nstanceDet ai | s>

<description xm:lang="en">The WSDL docunent for
this

i nstance of the Invoice Wb service. </description>
<overvi ewbDoc>

<description xm :lang="en">Sone
descri ption. </ descripti on>

<overvi ewdRL>htt p://cont oso. com | nvoi ce. asnx?wsdl

</ overvi ewURL>
</ overvi ewboc>
</instanceDetail s>
</t Model | nst ancel nf o>
<t Model | nst ancel nfo t Model Key=
"uui d: b31cf f 85-8b1lb- 4502- bcel- 92229f 579238" >

<description xm :lang="en">This document descri bes
t he wor kfl ow

enconpassi ng the PurchaseOrder and Invoice Wb
servi ce.

</ descri pti on>

<i nstanceDet ai | s>
<overvi ewboc />

</instanceDetail s>

</t Model | nst ancel nf o>
</t Model I nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>
</ busi nessServi ces>
</ busi nessEntity>
</ busi nessDet ai | >

Searching for Contoso Motor Company

Now that Contoso Motor Company is registered, a supplier can obtain information about the
registered services by querying the UDDI registry. To facilitate this, the UDDI API exposes a
set of get_ and find_ methods. The find_ methods are used to perform general queries. The
information returned is typically enough to display a meaningful result set to the user. You
can then use the get_ methods to retrieve the full information about a particular entry.

The following example retrieves the businessDetail entry listed in the previous section:

/'l Search for all businesses that have the nane Contoso Mot or
Conpany.
Fi ndBusi ness findBusi ness = new Fi ndBusi ness();

fi ndBusi ness. Nane = "Contoso Mdtor Conpany ";
Busi nessLi st busi nessLi st = findBusiness. Send();

/1l Get the businessDetail for the first entry in the result set.
Get Busi nessDet ai | get Busi nessDetail = new Get Busi nessDetail ();

get Busi nessDet ai | . Busi nessKeys. Add(busi nessLi st. Busi nessl nf os[0] . Bus
i nessKey) ;

Busi nessDetai |l businessDetail = getBusinessDetail.Send();
Consol e. Wi teLi ne

("The resulting businessDetail nessage received fromthe
registry:");

Consol e. WiteLine(busi nessDetail.ToString());

| first search for all businessEntity entries with the name Contoso Motor Company. By
default, UDDI performs leftmost name matching and is not case sensitive. For example, the

search strings CONTOSO, Contoso Motor, and Contoso Motor Co will all locate the entry |
published in the previous section.

You can modify the behavior of a query by specifying a qualifier within the
FindBusiness.FindQualifiers property. Table 9-3 describes the find qualifiers that a UDDI
registry must support. In addition, individual registries can support an extended set of
qualifiers.

Table 9-3: UDDI Registry Find Qualifiers

Value Description

exactNameMatch Specifies that the entire string must match the name. By
default, it is case insensitive.

caseSensitiveMatch Specifies that case is relevant within the specified search
string.

sortByNameAsc Specifies that the result set should be sorted alphabetically in

ascending order.

sortByNameDesc Specifies that the result set should be sorted alphabetically in
descending order.

sortByDateAsc Specifies that the result set should be sorted by the date last
updated in ascending order.

sortByDateDesc Specifies that the result set should be sorted by the date last
updated in descending order.

Obviously, sortByNameAsc and sortByNameDesc are mutually exclusive, as are
sortByDateAsc and sortByDateDesc. However, any other combination of the find qualifiers is
allowed. If more than one find qualifier is specified, the following order of precedence is
applied:

1. exactNameMatchand caseSensitiveMatch

2. sortByNameAsc and sortByNameDesc

3. sortByDateAsc and sortByDateDesc

Once | obtain my search results, | use the getBusinessDetail object to get the details of the
first record returned in my search results. The businessDetail returned contains the
information necessary for a supplier to establish an e-business relationship with Contoso.
Items of importance include the businessEntity UUID, the bindingTemplate access point, and
the UUIDs for the tModel objects.

Registering the Supplier

When a supplier registers itself in the UDDI directory, registering just the name, address,
and phone number is not sufficient. It must register in such a way that Contoso and other
potential customers can find it.

UDDI provides a way to categorize entries within the directory using well- known
taxonomies. The supported taxonomies include the North American Industry Classification

System (NAICS -1997), the Universal Standard Products and Services Codes (UNSPSC -
3.01), the Standard Industrial Classification (SIC - 1987), and the GeoWeb geographic
classification (August 2000).

| used a taxonomy earlier in this chapter when | specified the wwcontoso-com:Invoice and
www-contoso-com:PurchaseOrder tModel entities. Here is the portion of the code | used to
register the tModel entities:

saveTModel . TModel s[0] . Namre = "www\ cont 0so- com | nvoi ce";

/1 Set additional properties...

saveTModel . TMbdel s[0] . Cat egor yBag. Add("uddi - org: types", "wsdl Spec",
"uui d: clacf 26d- 9672- 4404-9d70- 39b756e62ab4");

The preceding code uses the UDDI Type Taxonomy to categorize the tModel as one that

references a WSDL document. A taxonomy is itself defined by a tModel definition. This is the
other primary use of tModel entities besides representing a technical specification.

In the preceding example, the third parameter of the CategoryBag.Add method references
the tModel that defines the UDDI Type Taxonomy. The UDDI Type Taxonomy is used to
categorize the type of data a tModel references. The taxonomy is hierarchical in nature, as
shown in the following figure. Table 9-4 lists the valid values defined by the taxonomy.

idantifier

nAMeSDace

xmi Spac

W

protocol

=

signalureComponeani

Table 9-4: UDDI Type Taxonomy Values

ID Description

tModel The root branch of the taxonomy hierarchy. End-user
categorization on this value is not allowed.

identifier Specifies that the tModel represents a taxonomy of unique
identifiers. The DUNS number uniquely identifies a company and
is an example of an identifier tModel.

namespace Specifies that the tModel represents a scoping constraint. This
value is synonymous with XML namespaces and is used to avoid
naming collisions.

categorization Specifies that the tModel represents a method of categorization.

The NAICS and UNSPSC—and even the UDDI Type
Taxonomy—are all examples of categorization tModel entities.

271

Table 9-4: UDDI Type Taxonomy Values

ID

Description

specification

Specifies that the tModel references a contract that defines the

interaction with a particular service. COM and RPC services are
examples of specification tModel entities.

xmlSpec

Specifies that the tModel references a contract that defines the
interaction with a particular service using XML. Examples of
xmlSpec tModel entities include a DTD and an XML Schema
schema.

soapSpec

Specifies that the tModel references a contract that defines an

interaction with a particular service using SOAP. The schema for
the Inquire UDDI API is an example of a soapSpec tModel.

wsdISpec

Specifies that the tModel references a WSDL document that
defines an interaction with a particular service. The ww-
contoso-com:Invoice tModel is an example of a wsdISpec
tModel.

protocol

Specifies that the tModel references a particular protocol for
interacting with a particular service.

transport

Specifies that the tModel references a particular transport
protocol for interacting with a particular service. HTTP and FTP
are examples of transport tModel entities.

signatureComponent

Specifies that the tModel does not represent the complete
specification for a Web service. An example would be an
individual step in a business process.

You can create your own taxonomies by creating a tModel that contains a categorization
entry in its category property bag. However, to help ensure that potential purchasers can find
Fabrikam when they are looking for a wing nuts manufacturer, | use a taxonomy that is core
to UDDI. (The taxonomies that are essential to UDDI are listed at
http://www.uddi.org/taxonomies/Core_Taxonomy_OverviewDoc.htm

)

Specifically, | categorize Fabrikam Wing Nuts using the UNSPSC. The UNSPSC is defined
by the Electronic Commerce Code Management Association (ECCMA) and can be browsed
at http://eccma.org/unspsc/browse/ .

The following console application registers Fabrikam Wing Nuts in the UDDI directory:

usi ng System

usi ng M crosoft. Uddi. Api;

usi ng M crosoft.

using M crosoft.

usi ng M crosoft.
usi ng M crosoft.
using Mcrosoft.

uddi ;

Uddi . Busi ness;
Uddi . Servi ceType;
uddi . Servi ce;
Uddi . Bi ndi ng;

cl ass Application
{
static void Main(string[] args)
{
/1l Initialize the publisher paraneters.
Publish. Ul = "http://local host/uddi/publish.asnx";
Publ i sh. User = "udditest";
Publ i sh. Password = "";
/'l Create a new businessEntity.
SaveBusi ness saveBusi ness = new SaveBusi ness();
Busi nessEntity fabrikam = new Busi nessEntity();
saveBusi ness. Busi nessEntities. Add(fabri kam ;
fabri kam Name = "Fabri kam Wng Nuts";
fabri kam Descri ptions. Add("", "Just a bunch of wing nuts.");

/1 Add the UNSPSC code for wi ng nut manufacturer.

fabri kam Cat egor yBag. Add(" unspsc-org: unspsc",
"31.16.17.17. 00",

"uui d: CD153257- 086A-4237- B336- 6BDCBDCC6634") ;

/] Contact information...

The preceding code creates a businessEntity for Fabrikam Wing Nuts and categorizes it

using the UNSPSC taxonomy. The code for wing nut manufacturers is 31.16.17.17.00. (Yes,
there actually is a code defined for wing nut manufacturers.) If Fabrikam decides to diversify

its product line, it can add more entries to the category property bag.
/1 Add a businessService for the Web services
/1l related to supply chain managenent.
Busi nessServi ce scnServi ce = new Busi nessService();
fabri kam Busi nessServi ces. Add(scnServi ce) ;
scnBServi ce. Name = "Supply Chain Managenent Wb Service";
scnServi ce. Descri ptions. Add("",
"Web services for conducting e-comrerce with suppliers.”);

/1 Add the binding tenplate for the PurchaseOrder Wb
servi ce.

Bi ndi ngTenpl at e purchaseOrder Bi ndi ng = new
Bi ndi ngTenpl ate() ;

scnSer vi ce. Bi ndi ngTenpl at es. Add(pur chaseOr der Bi ndi ng) ;
pur chaseOr der Bi ndi ng. Descri pti ons. Add("",

"The Web service for submitting purchase orders to Fabri kam
W ng Nuts.");

pur chaseOr der Bi ndi ng. AccessPoi nt. Text =
"http://fabri kam conf PurchaseOr der. asnx";

pur chaseOr der Bi ndi ng. AccessPoi nt. URLType = URLTypeEnum Htt p;

// Add a reference to the www cont oso- com Pur chaseOr der
t Model .

TModel | nst ancel nf o purchaseOrder = new Thbdel | nstancel nfo();

pur chaseOr der Bi ndi ng. TMbdel | nst anceDet ai | . TModel | nst ancel nf os. Add
(purchaseCOr der);

pur chaseOr der. TMbdel Key = "uui d: 2a1109f f - 5d31- 4df 1- 86f 6-
b8f cff797030";

Consol e. WiteLi ne("The save_Busi ness nmessage sent to the
registry:");

Consol e. Wi telLi ne(saveBusi ness. ToString());
Busi nessDetai |l busi nessDetail = saveBusiness. Send();
Consol e. Wi teLine

("The resulting businessDetail nmessage received fromthe
registry:");

Consol e. Wi teLine(businessDetail.ToString());

}

| register the Invoice Web services that are compliant with Contoso's www-contoso-
com:PurchaseOrder tModel, and then | save the businessEntity to the registry.

Searching for the Supplier

When Contoso Motor Company needs to replenish its supply of wing nuts, it can search the
UDDI directory for potential suppliers. The following code searches the UDDI directory for
suppliers.

Inquire. Ul = "http://test.uddi.mcrosoft.cominquire";

Fi ndBusi ness fi ndBusi ness = new Fi ndBusi ness();
fi ndBusi ness. Cat egor yBag. Add(" unspsc-

org:unspsc", "31.16.17.17.00", "uuid: CD153257- 086A-4237- B336-
6BDCBDCC6634") ;

fi ndBusi ness. TNbdel Keys. Add(" uui d: 2a1109f f - 5d31- 4df 1- 86f 6-
b8f cf f 797030") ;

Busi nessLi st busi nessLi st = findBusiness. Send();

Consol e. Wi teLi ne(busi nessLi st);

274

The preceding code searches for all businessEntity entries that are categorized as wing nut
manufacturers and also expose the PurchaseOrder Web service. Because Fabrikam meets

these criteria, it will be included in the resulting businessList.

The ability to search for potential suppliers in a centralized directory offers a couple of
advantages. First, suppose Contoso already has an established relationship with another
wing nut supplier. If, for some reason, this supplier cannot accommodate Contoso’s orders,
Contoso can search the directory for other potential suppliers.

Another advantage of a centralized directory is that companies other than Contoso can
locate Fabrikam in the UDDI directory. For example, if Billy’s Rocking Horse Manufacturing
is putting together a new line that requires wing nuts, it can locate Fabrikam by performing a
search of the UDDI directory.

Visual Studio .NET Integration

Visual Studio .NET supports UDDI. The two primary points of integration are the Visual
Studio .NET Start page and the Add Web Reference Wizard.

The Visual Studio .NET Start page lets you register Web services as well as search for Web
services registered in the UDDI directory. This functionality is available through the XML
Web Services page, which serves as a portal to a registrar customized for Visual Studio
.NET.

This Web page is hosted on the Internet, so it is subject to change. As of this writing, it has

three tabs: Getting Started, Find A Service, and Register A Service. The latter two tabs are
used to register and locate Web services in the Microsoft test and production UDDI registry.

The Find A Service tab presents a simple search screen for finding Web services that have
been categorized using the VSCATEGORY taxonomy. You can easily add each resulting
entry to the current project by clicking on the link provided.

The Register A Servicetab provides a simple three-step Ul for registering a Web service. On
the first screen, you log in with your Passport credentials. The next screen gives you the
option to publish against the Microsoft test or production registry. Here is the final screen,
where you enter information about the Web service:

U Wl Sy Bogidr o ion

uDDI Web Service Registration i

Sep X Dober powr Wek Seovice Infarmatios

TEs indtrmmabann 1o stter balom sl arabis obhar s b b and conmams yosr W Sarecs Savugh
5 mode. MET Tlart Pace

Wk Seraice Pogre; [res web 5o

Do st rabar Seprry—
Mmarapes of 298 Charsciars

i T —r—
el -n; 7 .-._-l__'|_.._- Pr—————

Select s Srrvice Cotrgeey T —
=]

The information provided is used to create a businessService with an associated
bindingTemplate. The Web Service Name and Description fields set the name and

description of the businessService, respectively. The .asmx URL, .wsdl URL, and Service
Category are used to set the appropriate properties on the bindingTemplate. The Visual

Studio .NET registrar also registers a tModel on your behalf.

The following is the businessService entity that is created as a result of the above
registration:

<busi nessServi ce servi ceKey="3a4d24al- 9722- 4499- 87bb-ed7cb39d01a5"
busi nessKey="c2a5e253- al0d- 431c- al67-016d057f 8890" >
<name>Test Web Servi ce</nane>
<description xm :lang="en">This is only a test.</description>
<bi ndi ngTenpl at es>

<bi ndi ngTenpl at e servi ceKey="3a4d24al- 9722- 4499- 87bb-
ed7cb39d01a5"

bi ndi ngKey="bcbddla4-3605- 4950- bc83- 46ddb17e51dc" >

<description xm :lang="en">This is only a test.</description>
<accessPoi nt URLType="http">http://test/test.asnx</accessPoi nt>
<t Model | nst anceDet ai | s>

<t Model | nst ancel nf o t Model Key="uui d: e4f e05d6- 2691- 430a- bbf d-
81d6e5491b91" >

<description xm:|lang="en">WSDL Wb Service Interface (Added
by VS)

</ descri ption>
<i nstanceDet ai | s>
<description xm:lang="en">WSDL Wb Service Interface (Added
by VS)
</ descri ption>
<overvi ewDoc>
<overvi ewJRL>http://test/test.asnk?wsdl </ overvi ewURL>
</ overvi ewDoc>
</instanceDet ai | s>
</t Model | nst ancel nf 0>
</t Mbdel | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
<cat egor yBag>

<keyedRef erence t Model Key="uui d: 4c1f 2elf -4b7c- 44eb- 9b87-
6e7d80f 82b3e"

keyName="VSCATEGORY" keyVal ue="14" />
</ cat egor yBag>
</ busi nessServi ce>
In addition to using the Find A Service tab on the Visual Studio .NET Start page, you can

also search for Web services registered in UDDI using the Add Web Reference Wizard. The
wizard allows you to search for all Web services published by a particular businessEntity.

The following is the result of a search for all Web services published by the GotDotNet
businessEntity:

EEE TN 2

o T 05 Tt e s i e, et AR -0 3]
—— i e —

Juddi oyt g e p

Only entries that reference tModel objects in the wsdISpec category are listed. To add a
reference to a Web service, click on the link to its WSDL interface and then click the Add
Reference button.

DISCO

The mere name generates visions of John Travolta strutting his stuff in a polyester leisure

suit. DISCO, which is short for Discovery, is yet another technology that you can use to
advertise and discover Web services.

The DISCO protocol was developed by Microsoft, which currently has no formal plans for
submitting the DISCO specification to a standards body. So, if we have UDDI, why DISCO?

Recall that UDDI is a structured, centrally managed directory service. Its ability to discover
Web services is company-centric. It is difficult to query UDDI to determine what Web
services are exposed by a particular server. For this type of query, you need a more
decentralized mechanism for locating Web services.

DISCO allows you to discover the Web services running on a particular computer by
providing a browse paradigm for locating a particular Web service. In some respects, DISCO
is similar to the hyperlink navigation popularized by HTML. You can advertise a top-level
index that contains references to specific Web services or to other DISCO files.

Because DISCO supports a browse paradigm, it is well suited to development environments.
And because DISCO does not require you to formdly register with UDDI, you can quickly
expose your Web services to other developers. Developers can browse your development
server to discover the URL of a particular Web service that they need to code against.

Visual Studio .NET and DISCO

By default, the Visual Studio .NET Add Web Reference Wizard uses DISCO files to locate
Web services. However, you will probably want something other than a DISCO file to serve
as the default page of your Web server.

Even if the Web site hosts only Web services, the default page will probably contain HTML
documentation. Therefore, during the installation of Visual Studio .NET, a link HTML tag is

placed within the default page of the Web server. Here is an example:

<HTM_>

<HEAD>

<link type="text/xm’ rel="alternate’ href="Default.vsdisco />
</ HEAD>

<BODY>

Wel comre to ny Web site!

</ BODY>

</ HTM.>

If the default page of the Web site is an XML document, you can add an xml-stylesheet
processing instruction. Here is an example:

<?xm version="1.0" ?>

<?xm -styl esheet type="text/xm " alternate="yes"
hr ef =" Def aul t. di sco" ?>

<My Xm Docunent >Test </ MyXm Docunent >

For the most part, Visual Studio .NET automatically creates the necessary DISCO files for
you. During installation, Visual Studio .NET will automatically create a DISCO file for the

default Web server.

Here is an example of the DISCO file created for a Web service project:
<?xm version="1.0" ?>

<dynam cDi scovery xm ns="urn: schemas-dynam cdi scovery: di sco. 2000-03-
17" >

<excl ude path="_vti _cnf" />
<excl ude path="_vti _pvt" />
<excl ude path="_vti _log" />
<excl ude path="_vti_script" />
<excl ude path="_vti _txt" />

</ dynani cDi scovery>

The DISCO file named Default.vsdisco is placed in the root directory of the Web server. All
files hosted on Microsoft Internet Information Server (I1S) that contain the .vsdisco file
extension will be handled by DiscoveryRequestHandler within ASP.NET. However,
DiscoveryRequestHandler is disabled by default. To enable discovery support within your
ASP.NET application, add an entry similar to the one below to the httpHandlers section of
your web.config file. You can also apply the setting machine-wide by editing your
machine.config file.

<ht t pHandl er s>
<add verb="*" path="*.vsdi sco"
type="System Web. Servi ces. Di scovery. Di scover yRequest Handl er,
System Web. Servi ces, Version=1.0.3300.0, Culture=neutral,
Publ i ckeyToken=b03f 5f 7f 11d50a3a" val i date="fal se"/>

</ htt pHandl er s>

DISCO files that contain the dynamicDiscovery element will prompt the ASP.NET ISAPI filter

to search the immediate directory for all files containing an .asmx extension and to search all
subdirectories for all files with a .vsdisco extension. Any path listed with an exclude element

will be ignored.

For example, suppose the dynamic discovery file was generated on a server named
DEVELOPMENT. The server will host the Invoice Web service in a subdirectory by the same
name. In this case, the resulting DISCO file is as follows:

<?xm version="1.0" encodi ng="utf-8"?>
<di scovery xm ns="http://schems. xm soap. org/ di sco/ ">
<di scoveryRef ref="http://DEVELOPMENT/ I nvoi ce/l nvoi ce. vsdi sco" />

</ di scovery>

The DISCO document contains a discoveryRef element for each DISCO file it finds within its
subdirectories. This element is similar in purpose to an HTML HREF. The client can follow
the link to drill down further.

When Visual Studio .NET creates a Web services project, it creates a DISCO file. This file is
given the same name as the project and a .vsdisco extension. The following are the contents
of the Invoice.vsdisco file:

<?xm version="1.0" ?>

<dynam cDi scovery xm ns="urn: schemas-dynam cdi scovery: di sco. 2000-03-
17" >

<excl ude path="_vti _cnf" />

<excl ude path="_vti _pvt" />

<excl ude path="_vti _log" />

<excl ude pat h="_vti _script" />
<excl ude path="_vti _txt" />

<excl ude pat h="Web References" />
</ dynam cDi scovery>

The contents of the Invoice.vsdisco file are similar to those of the Default.vsdisco file except
that they exclude the Web References directory. When a client accesses the file, this DISCO

file is dynamically generated:

<?xm version="1.0" encodi ng="utf-8"?>

<di scovery xm ns="http://schemas. xm soap. org/ di sco/ ">
<contract Ref ref="http://DEVELOPMENT/ | nvoi ce/ | nvoi ce. asnx?wsdl| "
docRef ="htt p: // DEVELOPMENT/ I nvoi ce/ | nvoi ce. asnk"
xm ns="http://schemas. xm soap. org/ di sco/scl/" />

</ di scovery>

The resulting DISCO document contains a single contractRef element that contains a
reference to the WSDL document and the HTML documentation for the Web service.

Because it is expensive to perform a directory scan each time a dynamically generated

DISCO file is accessed, you can opt to expose a static DISCO file instead. The easiest way
to create a static DISCO file is to replace the file with the results of the dynamically

generated DISCO file. For example, you might do this on heavily accessed development
servers or before the Web service is deployed to production.

Summary

The two primary methods of publishing a Web service so that it can be discovered by others
are UDDI and DISCO. UDDI is a central, highly structured directory service, and DISCO
offers a free-form, browser-style discovery mechanism.

UDDI is a central repository for publishing technical specifications and company information,
including services a company exposes over the Internet. Data published to UDDI includes
information about the company as well as references to technical specifications.

UDDI is composed of registries and registrars. A company publishes its information to a
single public registry via a SOAP-based API. The registry is then responsible for replicating
the information to its peer registries. A company can also use an HTML interface provided by
a registrar to manage its information within the UDDI directory.

The four primary datatypes are tModel, businessEntity, businessService, and

bindingTemplate. UDDI provides an API for publishing and locating instances of these
datatypes.

A tModel serves a dual purpose. First, you can use it to reference a technical specification
such as a WSDL document, a transport protocol, or a workflow specification. Second, a
tModel can reference a particular taxonomy used to categorize the information published
within the directory.

A businessEntity is usually a company or a division within a company. It contains information
such as the company address and contact information. It also contains information that
categorizes the company, such as the particular industry.

A businessService is a collection of related services that a company exposes. A
businessService is composed of a collection of bindingTemplate objects. A bindingTemplate
describes a particular service, including the service’s endpoint and the technical
specifications the service supports.

Microsoft provides the UDDI SDK to facilitate developing UDDI-aware applications. The SDK
contains a .NET object model to simplify interacting with a UDDI registry. It also contains the

UDDI Developer Edition, a standalone registry that is installed locally and that fully supports
the UDDI API.

DISCO is a lightweight mechanism for discovering Web services. It is used primarily for
development by the Visual Studio .NET IDE. Visual Studio .NET automatically creates the
necessary DISCO files. The DISCO file for a particular server is created at installation time;
the DISCO file for a particular Web service is created along with the Visual Studio .NET
project in which it is contained.

Chapter 10: Building Secure Web Services

By nature, many Web services reside in the most hostile of environments—the Internet. For
this reason, your Web services must employ appropriate security technologies. You can use

an approach known as threat modeling to determine which parts of your application are most
at risk and what tools and technigues you should employ to mitigate the threats.

In this chapter, | explain threat modeling in detail and how it applies to building secure Web
services. | then discuss security technologies provided by Microsoft Internet Information
Services (IIS) 5 and 6, and | also discuss important XML-based security technologies such
as XML Signatures and XML Encryption and how the Microsoft .NET Framework supports
them. Finally | look at common security mistakes people make when building Web services
and how you can avoid making errors that lead to insecure Web services.

An Introduction to Threat Modeling

You probably want to get right to the meat of how to build secure systems. But unfortunately,
we need to first discuss the design phase because when software is designed in random
fashion, security is often a victim of the chaos. One way to provide structure during the
design phase is to create a threat model.

The principle behind threat modeling is that you cannot build secure systems unless you
understand the threats to the application. The good news is that threat modeling is simple

and enjoyable. As a bonus, it can form the basis of the security section of the design
specifications! In my experience, services built with the aid of a threat model tend to have
better-designed security features and thus more secure systems. So stick with me for a short
while—it will be worth the effort.

It is important that you spend time doing threat modeling because it is cheaper to find a
security design bug at the design stage and remedy it before coding starts. The threat
modeling process has the following three main phases:

1. Brainstorming threats

2. Choosing techniques to mitigate the threats

3. Choosing appropriate technologies to apply the techniques

Let's look at each part of this process in turn.

Brainstorming Threats

A brainstorming meeting involves setting aside two or three hours for the development team
to discuss areas of potential vulnerability. During the meeting, have someone draw up the
proposed architecture on a whiteboard. Make sure the diagram covers all critical aspects of
the Web service, including:

. Data storage technologies (file storage, SQL databases, XML files, and registry)

. Interprocess communication techniques (including RPC, .NET Remoting, and sockets)
" User input techniques (SOAP arguments and HTTP messages)

" Nonpersistent data (such as on-the-wire data)

Next you look at how each of the core components can be compromised. One method is to
use the STRIDE threat modeling technique.

Employing the STRIDE Threat Model

Before you build your systems, it is often useful to ask questions such as the following:

How can an attacker hijack the online shopping cart?

What would be the impact of an attacker denying valid users access to the service?

How could an attacker view or change the data traveling from the service to the
consumer?

One way to make sure you ask all the important questions is to use threat categories. In this
case, we will use the STRIDE threat model. STRIDE is an acronym derived from the
following six threat categories:

Spoofing identity Identity spoofing often means illegally accessing and then using
another user’s authentication information, such as username and password.

Tampering with data Data tampering involves malicious modification of data.
Examples include making unauthorized changes to persistent data, such as that held in
a database, and altering data as it flows between two computers over an open network
such as the Internet.

Repudiation Repudiation occurs when users deny performing actions without other
parties having any way to prove otherwise— for example, a user performing an illegal
operation in a system that lacks the ability to trace the prohibited operation.
Nonrepudiation is the ability of a system to counter repudiation threats. For example, if a
user purchases an item, he might have to sign for the item upon receipt. The vendor
can then use the signed receipt as evidence that the user received the package. As you
can imagine, nonrepudiation is extremely important for ecommerce. The simplest way
to think about repudiation is to utter the words “It wasn’t me!”

Information disclosure Information disclosure threats involve exposure of
information to individuals who are not supposed to have access to it—for example, a
user being able to read a file for which she was not granted access or an intruder’s
ability to read data in transit between two computers.

Denial of service Denial of service (DoS) attacks deny service to valid users—for
example, by making a Web server temporarily unavailable or unusable. You must
protect against certain types of DoS threats simply to improve system availability and
reliability.

Elevation of privilege In this type of threat, an unprivileged user gains privileged
access and thereby has sufficient access to compromise or destroy the entire system.
Elevation of privilege threats include situations in which an attacker has effectively
penetrated all system defenses and has become part of the trusted system itself—a
dangerous situation indeed.

If you look back at the three example questions noted earlier, you will notice that the first
guestion concerns a data-tampering threat (T), the second one concerns a DoS threat (D),

and the third concerns an information disclosure threat and a tampering threat (I and T).

The simplest way, by far, to apply the STRIDE model to your application is to consider how
each type of threat will affect each solution component and each component’s connections
or relationships with other solution components. Essentially, you look at each part of the
application and determine whether any S, T, R, I, D, or E threats exist for that component or
process. Most parts will have numerous threats—be sure to record all of them.

Choosing Techniques to Mitigate the Threats

The next step is to determine appropriate mitigation techniques. Table 10-1 outlines some
technigues and technologies for mitigating threats in the STRIDE categories.

Table 10-1: Threat Mitigation Techniques

‘ Threat Type ‘ Mitigation Technique

‘ Spoofing identity ‘ Authenticate principals using technologies such as basic

Table 10-1: Threat Mitigation Techniques

Threat Type

Mitigation Technique

authentication, digest authentication, NTLM authentication,
Kerberos authentication, X.509 certificates, .NET Passport
authentication, and forms-based authentication. Remember that
sometimes you need to authenticate the client, and at other
times you need to authenticate the server.

You can also prove that data came from a principal by signing
and verifying digital signatures, such as those employed by
XMLDSIG and PKCS #7. These are both explained later in this
chapter.

Do not store secret data insecurely, especially authentication
data such as passwords and PINs.

Tampering with data

Protect data with appropriate Access Control Lists (ACLs) or
permissions. Determine whether data has been tampered with
using hashes or message authentication codes. Protect on-the-
wire data using SSL/TLS or IPSec.

Repudiation

Protection from repudiation often involves strong authentication
and signed data, as well as extensive and secure logging or
auditing.

Information disclosure

Data can be protected from prying eyes using appropriate ACLs
and permissions. Also, consider that if you do not store the data
in the first place, the data cannot be disclosed. Privacy
techniques such as encryption can help if the keys used to
encrypt and decrypt the data are also protected from disclosure
threats. SSL/TLS and IPSec provide on-the-wire secrecy, and
Encrypting File System (EFS) provides privacy for files and
directories.

Denial of service

DosS threats are difficult to defend against because it is difficult
to tell whether a busy server is simply busy or is under attack. If
you throttle user requests, you might lock out access to valid
users. Some simple defenses include limiting what
nonauthenticated users can do. For example, you might
allocate 10 percent of resources for anonymous users and 90
percent for validated users. (Resources include cache data,
CPU time, disk space, network bandwidth, and connections to
databases.)

Some of these solutions are beyond your direct control in an
application and might include firewalls and packet-filtering
routers.

Elevation of privilege

Do not require privileges or permissions you do not need. That
way, if your code has a security flaw and the attacker can
execute malicious code or cause an insecure event to occur, he
cannot cause much damage because the permissions are
suppressed.

A Web Service Example

If all of this makes little sense to you so far, do not worry. An example will help. Let’s look at
a simple scenario in which a Web service client communicates with a Web service, which in
turn communicates with a database and returns content to the client, as depicted in Eigure
10-1. We will assume that the client is a user, not a peer process.

Wab
SBrdEon
chan

HTTP
L

HTTP Wb Sockets
— ‘—.-

S0L

sarsar

Figure 10-1: A sample Web service scenario.

This generic scenario applies to many Web services. Table 10-2 lists some of the threats to
the system and how they can be mitigated.

Table 10-2: Threats to Web Services and Appropriate Mitigation Techniques

Target ID Threat Description Mitigation Techniques
Types
Web 1 S Attacker knocks out Web Use a client-initiated
service service using distributed SSL/ TLS connection to
DoS attack and places his authenticate the server.
own rogue Web service on
the Internet. The client
application does not know
that it is communicating with
a rogue.
On-the- 2 Tand | Attacker views or modifies Use SSL/TLS or IPSec
wire data data en route from the client to encrypt data as it
from to the server and vice versa. travels to and from the
clientto Web
service service.
On-the- 3 E Attacker views password Use an authentication
wire data data en route from the client mechanism that does not
from to the server; if the user is pass the password in the
clientto an administrator, the clear across the wire, or
attacker can use the use SSL/TLS or IPSec to
service username and password. protect the channel.
Web 4 D Attacker floods the Web Use a firewall to restrict
Service service with thousands of what data is allowable.
bogus requests and slows Build logic that limits how

much data can be sent
by one user or IP
address. Limiting by IP
address can be
problematic, however,
because many legitimate
users use ISPs that have
a limited number of IP
addresses, so numerous
requests might appear to

down the Web service.

Table 10-2: Threats to Web Services and Appropriate Mitigation Techniques

Target ID Threat Description Mitigation Techniques
Types

come from the same IP
address when they are in
fact coming from users
behind a proxy server.

SQL 5 Tand | Attacker accesses data in Limit what is allowable in
Server SQL Server directly rather data used to construct
data than via the Web service. SQL queries.
SQL 6 S, T, Attacker uses the Limit what is allowable in
Server R, I, D, Xp_cmdshell extended data used to construct
and E stored procedure built into SQL queries. Remove
SQL Server to call malicious unused extended stored
code at the SQL database. procedures such as
This command can call any xp_cmdshell. Do not
command at the server. connect to SQL Server

as the sysadmin account
(sa) because this
account can perform any
SQL Server task,
including calling
xm_cmdshell.

This scenario should help you understand the process for determining what techniques and
technologies to employ to build secure solutions. This approach is much better than simply
sprinkling “magic security pixie dust” on an application and hoping that the application will be
secure from attack.

Now let’s turn our attention to the panoply of security technologies available to developers
who build Web services on the Windows platform.
More
Info You can learn more about threat analysis and building secure systems in
Writing Secure Code by Michael Howard and David LeBlanc (Microsoft
Press, 2001).

Web Service Security Technologies

The third phase of the threat modeling process involves choosing appropriate technologies
to apply the threat mitigation techniques you have chosen. Before | describe specific
technologies, let's take a look at what the current Web service infrastructure provides in the
way of security features.

As of this writing, the primary communication protocol used by Web services, SOAP, does
not define security protocols; it relies on the Web server, and potentially the client
application, to provide those services. The main reason for this is that SOAP is transport
independent; Web services use HTTP as a transport, but other SOAP-based services might
use SMTP or other technologies as a transport. This can be problematic if your threat model
determines that the data must be secure as it travels from the client to all back-end servers.

Let’s look at an example, which is depicted in Figure 10-2. The client communicates with a
Web service, and the service determines that it will protect the client data using SSL or TLS

as the data moves between the client and the Web service. It will then send the client data to
a back-end service that uses sockets as a transport.

Wik HTTF with S5LTLS Web Sockets Aps
chend [¥ sence [V ¥ =i

Figure 10-2: A scenario using SSL or TLS to protect client and server data.

Can you see where the problem is? The protection provided by SSL/TLS applies only to the
link between the client and the server, ot to the link between the server and the back-end
application server. In many instances, this might not be an issue. However, if you determine
in your threat modeling that information disclosure threats exist as data leaves the Web
service and the back- end server, SSL/TLS will not work. Even if the data is reprotected
using SSL/TLS between the Web service and application server, it will remain in cleartext for
a nonzero amount of time at the Web service and might be viewed by a user at the server.
(Of course, you should trust the people administering the Web service!) Once again, this
might be a risk you are willing to live with, but your decision should be based solely on your
threat modeling.

Now that you have a basic understanding of the security features that the current Web
service infrastructure provides, let's look at some ways to apply security technologies

appropriately.
Web Services Authentication

Authentication is the ability to prove that an entity—for example, a user or a computer—is
who it claims to be. You can verify this claim by having the entity, also called a principal,
provide credentials. Credentials often take the form of a username and a password. Note
that some authentication protocols are more secure than others—you can be more certain
that the credential really came from the correct user and was not replayed by an attacker. A
Web service running on top of IS has a number of authentication protocols available to it,
most notably

" Anonymous authentication

. Basic authentication

. Digest authentication

. Windows authentication

. Certificate-based authentication

" Forms-based authentication

" .NET Passport authentication

Let’s look at each in detail.
Anonymous Authentication
Anonymous authentication is just that—anonymous. No authentication takes place. This is

the authentication mechanism you would use for public data. You do not need to update or
add any code to your SOAP client because no authentication is taking place.

Basic Authentication

Basic authentication is probably the most common form of authentication on the Internet
because of its simplicity. It is provided by every browser on every platform. It is also insecure

because the username and password are sent on every request from the client to the server
in the clear—the data is not encrypted. This means that you must use some form of channel

encryption to protect the username and password from disclosure to malicious users. Of
course, you technically do not have to encrypt the channel if you do not care whether the
username and password are disclosed. And, frankly, this might be fine if your Web service
serves nonconfidential data such as stock information or news headlines. There is a
difference between using authentication as a means to protect access to data and using
authentication as a means to identify users to give them the personalized content they
require. Once again, you should use threat modeling to determine whether basic
authentication is good enough for your application.

In IS 5 and 6, accounts used for basic authentication must be valid Windows accounts.
However, when basic authentication is used by ASP.NET or, by inference, is used by a Web
service written using ASP.NET, you can use a database lookup to determine whether the
credentials are correct. You can set basic authentication within the 11S administration tool.

If you use basic, digest, or Windows authentication, you can set the username and password
in a SOAP client, as shown in the following VBScript code:

Set sc = CreateObj ect ("MSSoap. SoapClient")
sc. nssoapinit("http://ww.fabrikam conm webservi ce/ service. asnx?wsdl "
)

sc. Connect or Property("Aut hName") = "user nane"

sc. Connect or Property("Aut hPassword") = "password"”
St atus = sc. Get Shi ppi ngSt at us("10001")

If you wrote your client-side application using C++ and the ATL SOAP classes, you can set
the username and password in the CAtIHttpClient::

AddAuthObj method. If your client code is written in C# or another managed language, such
as Visual Basic .NET, you can use code such as the following to create an authenticated

connection to the Web service. (This code will work for basic, digest, and Windows
authentication.)

usi ng System
usi ng System Net;
usi ng System Web. Servi ces. Prot ocol s;

Cli ent App. |l ocal host. Service s = new ClientApp. | ocal host. Service();
s.Credentials = new Networ kCredenti al (usernane, password, domain);
string shipped = s. Get Shi ppi ngSt at us("10001");

In the overall scheme of things, basic authentication is incredibly weak, especially when
SSL/TLS is not employed.

Digest Authentication

Like basic authentication, digest authentication is an Internet standard; both are described in
RFC 2617 at http://www.ietf.org/rfc/rfc2617.txt. However, unlike basic authentication, digest
authentication is not common because the only browsers that support digest authentication
are Internet Explorer 5 and later. Digest authentication does not transfer the user’s password
in the clear; instead, a hash, or digest, of the password and data provided by the server is
used to authenticate the user. Digest authentication is certainly a little more secure than

basic authentication, and it has the added advantage that you do not need to use SSL to
hide the user’s password. But as | said, it is only a little more secure. Note also that digest

authentication works in 11IS 5 and 6 only if Active Directory is installed because Active
Directory can be configured to store an encrypted plaintext copy of the user’s password,
which is required by digest authentication.

As with basic authentication, you can use the IS administration tool to configure the Web
server to require digest authentication.

Windows Authentication

As the name implies, Windows authentication uses authentication mechanisms built into
Windows. From Windows 2000 on, this means NTLM and Kerberos. Kerberos authentication
is applicable only when Active Directory is employed. The main downside to Windows
authentication is that it does not work well across the Internet, but it is an exceptional
intranet solution because it can use the user’s logon information directly, without necessarily
prompting the user to enter a username and password. Also, the password is never sent
across the wire in plaintext.

Windows authentication can be configured like any other protocol, but in the case of
ASP.NET Web services, you can opt for Windows authentication by adding the following
code to the web.config file:

<aut hentication node = "W ndows" >
</ aut henticati on>

You can also force ASP.NET to impersonate the calling user with the following web.config
configuration entry:

<syst em web>
<identity inpersonate="true" />
</ system web>

You can then get the name of the calling user by using the following code in your Web
service:

usi ng System Security. Principal;
W ndowsldentity wi = Wndowsldentity. GetCurrent();
string nane = w . Nane;

Certificate-Based Authentication

Certificates use large private keys rather than passwords to determine the principal’s

identity. Before | delve into how and why you would use certificates, let's take a quick detour
through the technology behind certificates. Unlike symmetric key encryption, which uses a
single key to encrypt and decrypt data, certificates use asymmetric encryption, also called
public key encryption. When a certificate is created, two large keys are created, a private key
and a public key. The former, as the name implies, is private and should be protected. The
latter, the public key, can be made public and is embedded in the certificate, which contains
information about the private key owner.

Public key cryptography also has the following important attributes:
. Data encrypted with the public key can be decrypted only using the private key.
. Data encrypted with the private key can be decrypted only using the public key.

If you have a private key, you can send authenticated messages to others. In other words,
the recipient can prove that you sent the data. This is because you encrypt using the private
key, which only you own; it is private, and only the public key can decrypt the message. The
public key is in your certificate, which includes details about you, so you must have sent the
data.

The process of encrypting using a private key is also called signing. If you have someone
else’s public key, you can send that person encrypted messages. Actually, the process of
signing is a little more complex than that—the data itself is not signed, but a hash of the data
is signed, for the sake of speed.

Most certificates today use a cryptographic algorithm called RSA, the U.S. patent for which
expired in September 2000.
Note
Some trivia: The RSA algorithm uses large prime numbers when creating its
keys. The now-expired patent number for RSA is 4,405,829. It is a prime
number!

When you use SSL/TLS, the session between the client and server is protected from prying
eyes using symmetric encryption. However, the server is also authenticated. When you visit
the Barnes & Noble bookstore on line at http://www.bn.com and you go to check out, an
SSL/TLS session is established. During the handshake, the name of the Web site you are
browsing is compared with the name in the certificate to determine whether the server can
correctly decrypt random data provided by the client after it is encrypted with the site’s public
key from the certificate. If the site can decrypt the blob, the site must have the protected
private key associated with the public key in the certificate. Also, the date validity is verified
in the certificate. If all these steps succeed, the server is authenticated and the user knows
she is communicating with the real Barnes & Noble Web site, not an imposter.

The good news about SSL/TLS is that it also supports an optional client authentication
process. In this case, the server tells the client application to provide a certificate and to
decrypt a blob that was encrypted using the public key in the certificate. After some other
(we can hope successful) checks, the client is also authenticated. SSL/TLS client
authentication is an optional step in the SSL/TLS connection process and is in fact rarely
used except in very secure environments. In exceptionally secure environments, certificates
and private keys can be stored on smart cards.

You can force the SOAP client to use a specific client certificate by using the following
construct when you use the Microsoft SOAP Toolkit:

sc. ConnectorProperty("SSLClientCertificateNanme") =
"m ke@ abri kam cont

You should specify the common name (CN) part of the certificate’s subject name. Note that if
you have more than one certificate with the same subject common name, the first will be
chosen.

If your client code is written using the Visual Studio Web Reference Proxy code (which is
generated after you make a Web reference), you can set the client certificate using the
service's ClientCertificate collection. Note that you currently cannot access a certificate in a
CryptoAPI (CAPI) store in the same fashion that the SOAP Toolkit code can; you must use a
certificate file.

Forms-Based Authentication

Forms-based authentication is not an industry-standard way of authenticating users, but the
method is very popular. Forms-based authentication generally refers to a system in which

unauthenticated requests are redirected to an HTML form using HTTP redirection. The user
provides credentials (username and password) and submits the form. If the application
authenticates the request by performing a database or XML file lookup, the user is granted
access.

Forms-based authentication uses HTML pages, so it is not supported by Web services
because Web services have no Ul. However, ASP.NET does support forms-based
authentication.

.NET Passport Authentication

.NET Passport is a centralized authentication service provided by Microsoft that offers a
single sign-on and profile services for member sites. This benefits the user because she no
longer has to log on to access new protected resources or sites. If you want your site to be
compatible with Passport authentication and authorization, this is the provider you should
use. For more information, see the Passport documentation at
http://www.passport.com/business.

Because Passport authentication uses cookies, it is not currently supported by Web

services. However, this will change. ASP.NET does support Passport authentication, as
does IIS 6.

A full explanation of the IIS 5 authentication techniques is available in Designing Secure

Web-Based Applications for Microsoft Windows 2000 by Michael Howard (Microsoft Press,
2000).

Web Services Authorization

Once your application identifies a principal by using an authentication mechanism, it needs
to determine whether the user has access to the various resources your service protects and
can cal specific functions. Windows 2000 and later offer numerous ways to authorize access
to resources, with the most prolific and important being ACLs.

Windows NT and later protect securable resources (such as files) from unauthorized access
by employing discretionary access control, which is implemented through discretionary
access control lists (usually abbreviated as ACLs rather than DACLs). An ACL is composed
of a series of access control entries (ACEs). Each ACE lists a principal and contains
information about the principal and the operations that the principal can perform on the
resource. For example, some people might be granted read access and others might have
full control.

ACLs are quite literally your application’s last backstop against an attack, with the possible
exception of good encryption and key management. If an attacker can access a resource,
her job is done. Therefore, it is incredibly important that you have appropriate ACLs on the
resources you protect. For example, should all users (also called Everyone) have full access
to a sensitive file? Probably not, but certain users might.

The real beauty of ACLs is that they are always enforced the same way regardless of the
access mechanism. So, if for some reason an attacker can bypass your service and hence
circumvent application-evel authorization logic and access a resource directly, the
authorization policy in the resource’s ACLs will still be enforced.

A little higher up the application layer is authorization in ASP.NET and within your
application, or within the database permissions (assuming you are using a database).

ASP.NET offers a rich smorgasbord of authorization techniques; deploying such policies is
as simple as setting an XML property. For example, you can restrict access to a portion of
your Web service so that anonymous users are disallowed by adding the following to the
web.config file:

<aut hori zati on>
<deny users="?" [>
</ aut hori zati on>

In this case, ? means anonymous users and * means all users. You can also allow specific
users using <allow users="name" />, where name is one or more names separated by
commas.

Web Services Privacy and Integrity

When you think about privacy and the integrity of SOAP data, remember that there are two
aspects to both technologies. The first aspect is securing the channel between the client and
the Web service, and the second is securing the SOAP payload or data within the payload—
not only as it travels from the client to the Web service and vice versa, but also when the
data is persisted to some form of persistent data storage. The former scenario is well
understood and is easily handled with no code modification by using SSL/TLS or IPSec.
Because these protocols are below the application layer (the layer in which your service
resides), they are completely transparent. A simple switch in the Web server, and voila!—
you have a connection protected with SSL/TLS.

Presently, there is no standard way to encrypt SOAP messages or to provide for the integrity
of the payload data. This is especially true if you want to allow any client to connect to your
service, in which case you must support a standard way to achieve these goals. These
standards are currently being designed. You can read more about future directions in the

section titled “Euture Web Service Security Technologies” later in this chapter.

So what happens if you want to roll your own encryption or integrity mechanism? You can do
this if you have control over the client code and the server code because you can determine
what the data formats will look like. You can find a very simple example of doing this with
SOAP extensions at the MSDN site (http://msdn.microsoft.com/library/en-
us/dnaspnet/html/asp09272001.asp). However, as of this writing, the code uses a hard-
coded key to encrypt and decrypt the data using Data Encryption Standard (DES). If you
plan to use the code in your SOAP application, you should store the key elsewhere on the
computer, such as in the registry or in a protected XML configuration file (protected meaning
that the file is not easily accessible through the Web server and is protected using good
ACLs) and not in the source code itself. When you design systems using custom encryption,
key management is a very hard problem to solve. One way around this is to use SSL/TLS to
transfer the key from the server to the client. (Do not let the client determine the key—an
attacker might choose a weak key!) Then perform communication in the open but encrypt
the appropriate SOAP data.

You can determine whether a SOAP method is invoked over a channel secured using
SSL/TLS by using the following code:

if (HtpContext.Current.Request.|sSecureConnection) {
/1 Connection is using SSL/TLS.

} else {
/1l Connection is not using SSL/TLS.

21

This code will not detect whether IPSec is used to protect the channel between the client
and server. In fact, there is presently no way to determine this easily from the managed
environment.

While we are on the subject of keys, if you need to generate good-quality random data, such
as that used to create an encryption key, do not use the Random class—it is highly
predictable. Instead, use code such as this, which creates 32 bytes of highly random data:

usi ng System Security. Cryptography;
byte[] b = new byte[32];
new RNGCrypt oServi ceProvi der (). GetBytes(b);

Security Technologies in the .NET Framework

The .NET Framework offers support for encrypting and signing data, most notably encrypting
any data stream and signing any data stream, with special support for XML data. The latter
is provided through support for the World Wide Web Consortium (W3C) standard XMLDSIG.

Once you have agreed on a key to use to encrypt and decrypt data between the two hosts,
you can simply encrypt and decrypt using code such as the following, which uses the RC2
symmetric cipher:

static string Encrypt(string plaintext, byte [] key, byte [] IV) {
try {
MenoryStream ns = new MenoryStrean();
RC2 rc2 = new RC2CryptoServi ceProvider();
CryptoStream s = new CryptoStrean(ns,
rc2. Creat eEncryptor (key, V),
Crypt oStreanivbde. Wite);
byte [] p = Encodi ng. UTF8. Get Byt es(pl ai nt ext. ToCharArray());
s.Wite(p, O, p.Length);
s. Fl ushFi nal Bl ock();

return Convert. ToBase64String(mnms. ToArray());
} catch(Exception) {

return null;

static string Decrypt(string ciphertext, byte [] key, byte [] IV) {
try {
MenmoryStream ns = new MenoryStream();
RC2 rc2 = new RC2Crypt oServi ceProvider();
CryptoStream s = new CryptoStrean(ns,
rc2. CreatebDecryptor(key, V),
Crypt oStreamvbde. Wite);

byte [] ¢ = Convert. FronBase64String(ci phertext);
s.Wite(c, 0, c.Length);
s. Fl ushFi nal Bl ock();

return Encodi ng. UTF8. Get String(mnms. GetBuffer());
} catch(Exception) {
return null;

}

So, rather than simply sending the Web method data across the wire as plaintext, you can
encrypt the data and pass it as a Base64-encoded string or send sensitive data back from
the server in the same way. Hence, what might be open to “inspection,” such as the
following SOAP:

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope xm ns: xsi ="http://ww. w3c. org/ 2001/ XM.Schena-
i nstance"

xm ns: xsd="http://ww. w3c. org/ 2001/ XM_.Schema"
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ ">
<soap: Body>
<Get Meeti ngResponse xm ns="http://ww. fabri kam conf soap" >
<Get Meet i ngResul t >
Meet at M dni ght!
</ Get Meeti ngResul t >
</ Get Meet i ngResponse>
</ soap: Body>

</ soap: Envel ope>

becomes this, which is more secure:
<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ ">
<soap: Body>
<Cet Meeti ngResponse xm ns="http://ww. fabri kam com soap">
<Get Meeti ngResul t >
Ls| O+RO9UUMzi JdQLQAPOPOz aFxqGHS=
</ Get Meeti ngResul t >
</ Get Meet i ngResponse>
</ soap: Body>
</ soap: Envel ope>

You achieve this result by simply calling the encryption functions on method exit. For
example, this code snippet

[WebMet hod]
Public string GetMeeting() {

return neetingdat a;

}

becomes
[WebMet hod]
Public string GetMeeting() {

return Encrypt(nmeetingdata, key, [V);
}

Notice that it is assumed that the key and initialization vector values have already been
negotiated by the two parties.

|
What Is an IV?

An initialization vector (IV) is a random number, usually with the same number of bits as
the encryption algorithm block size, that is used as a starting point to encrypt a set of
data.

If IVs are not used, two identical ciphertext messages are generated when two identical
plaintext messages are encrypted with the same key. However, if each plaintext
message is encrypted with a different IV, the ciphertext messages generated are
completely different.

For better security, you should encrypt each message with a different IV, particularly
when the messages contain a large amount of duplication. Your application is
responsible for transmitting the 1V along with the encrypted message. There is no need
to encrypt an IV.

The problem with this code is that it requires both ends to have custom code, which is fine if
you control the client and the service but not if you want anyone to be able to connect to
your service from any client. This brings us to what is on the horizon for Web service
security.

Future Web Service Security Technologies

In October 2001, Microsoft announc ed the Global XML Web Services Architecture (GXA),
which builds on current Web service protocols such as SOAP, WSDL, and UDDI and adds
additional building blocks, including security called WS-Security.

WS-Security provides a security language for Web services. It describes enhancements to
SOAP messaging to provide three capabilities: credential exchange, message integrity, and
message confidentiality. You can use these three mechanisms independently or in

combination to accommodate a wide variety of authentication and cryptographic
technologies.

The full specification is available at http://msdn.microsoft.com/ws/2001/10/Security .

Common Security Mistakes

To build a Web service that can withstand attack, you cannot simply scatter security features
here and there. As | stated earlier, you must design your application with security in mind.

Here are the three most serious security mistakes that developers (including Web service
developers) make:

" Storing secret data insecurely

" Connecting to SQL Server incorrectly

. Building insecure SQL strings

While the .NET common language runtime and the .NET Framework help mitigate many
current security threats, such as buffer overruns, they cannot counter bad design decisions.
(In fact, all three types of mistakes apply to all programming environments and operating
systems.)

Let's look at each type of mistake in detail.

Mistake #1: Storing Secret Data Insecurely

Storing secret data securely is impossible in software—you can only make it more difficult for
an attacker to get at your data. Secure data storage is somewhat easier at the server
because the attacker does not have physical access to your software. However, storing
secrets in client code is truly impossible. This makes things difficult if you think you can
perform a secret handshake or perform a secret transaction based on a secret embedded in
your client application. Attackers can easily reverse-engineer the client application to
determine the secret.

Secret data includes private or personal data such as passwords, encryption keys,
identification numbers, sales figures, and credit card numbers. When you store data, you
should consider what the ramifications would be to you, your business, and your clients if the
data were exposed to unscrupulous users (I in the STRIDE model) or tampered with by an
attacker (T). (If you are having problems coming to grips with these issues, imagine that it is
your personal data being stored!)

Information disclosure threats are easy to take care of—you simply do not store the data in
the first place. I'm quite serious: in some situations, it is quite valid to give users the option of
having you store the data for them, but let it be an opt-in situation. Users might get added
ease of use when you store the data for them, but they might blame you if the data is not
adequately protected against attackers.

In addition, some data does not require storage; it is simply used to validate that the user
knows the data. One example is a password—you can determine whether a user knows a
password without storing the password itself. You do this by hashing the data and storing
only the hash, and then when the user provides the password, your code hashes the data
and compares the hashes. If the two are the same, the user knows the password.

The following sample code shows how you can gather a password from a user and compare
it to another hash:

public bool ConparePasswordHash(string password, byte[] hash) {

SHA1Managed h = new SHAl1Managed();
UTF8Encodi ng e = new UTF8Encodi ng();

byte[] p = e. GetBytes(password);

h. Conput eHash(p) ;
byte[] hr h. Hash;

bool sane = true;
for (int i =0; i < hr.Length; i++) {
if (hr[i] !'= hash[i]) {
same = fal se;
br eak;

return sane;

}

But what if you have to use secret data such as a password? Where should you store it, and
how can you secure it? One place you can store the data is in the web.config file; however, if
an attacker can access the configuration file directly, he can read the data. The same
applies to storing the data in an .aspx or .asmx file. Deployment issues aside, you should
avoid storing sensitive data in any of these files; instead, store it outside the Web space.
This might mean storing the data in the file system but outside the root of the Web file
system space or storing it in a location not in the file system, such as the system registry.

Mistake #2: Connecting to SQL Server Incorrectly

Many developers incorrectly connect to SQL databases, including SQL Server, using the
sysadmin account. They do this because testing is easier—everything works. Unfortunately,
this might also mean that everything will work for attackers, too.

The SQL Server sysadmin account, sa, is the most capable and privileged account available
to SQL Server. The account can do anything to a SQL Server database. If you must use
SQL authentication (rather than Windows authentication), you should connect using an
account that has only the permissions it requires in the SQL Server database and has no
access to any other objects in the database.

Also, make sure the account has a very strong password.

Mistake #3: Building Insecure SQL Strings

Go on, admit it: you have constructed SQL strings like this:
string sql = "select * fromtable where name = ‘" + nane + "*";

The variable name is provided by the user. The problem with this SQL string is that the
attacker can piggyback SQL statements in the name variable.

Imagine the following input, where name = "Blake", which builds this totally benign SQL
statement:

select * fromtable
where nane = ‘Bl ake’

But what if an attacker enters name = "Blake' delete from table where name = 'Lynne' --",
which builds the following malicious statement?

select * fromtable
where nane = ‘Bl ake’

del ete fromtable where name='Lynne’ --

This statement will return all the data in the table where the name is Blake, and then it will
delete all the rows where the name is Lynne! Believe me, many attacks are more insidious
than this. How can they happen? Because the SQL connection is made using the sysadmin
account, which can do anything to the database, including delete any data. Note the use of
the ' -- sequence—it is a comment operator, which makes the attack much easier to pull off.

Now let’s look at an example and some remedies.

An In-Depth Example

Now that we have looked at some best practices for building Web services and some
common mistakes, let’s look at an in-depth example. We will discuss a common insecure
scenario, and then we will look at ways to secure the Web service.

The Insecure Version (Do Not Try This at Home!)

Look at the following C# code, and see if you can figure out the vulnerabilities:
[WebMet hod(Descri pti on="Danger ous Shi pping Status")]
public string Get ShippingStatus(string Id) {
string Status = "No";
string sqlstring ="";
try {
Sqgl Connection sgl = new Sql Connecti on(
@ dat a source=| ocal host;" +
"user id=sa; password=password;" +
"initial catal og=Shipping");

sql . Open();

sql string="SELECT HasShi pped" +

" FROM detail " +
n \AHERE I D:l " + I d + "o II;

Sql Command cnd = new Sgl Command(sql string, sql);
if ((int)cnd. ExecuteScalar() !'= 0)
Status = "Yes";

} catch (Sqgl Exception se) {
Status = sqlstring + " failedin\r";
foreach (SqlError e in se.Errors) {
Status += e. Message + "\n\r";

}
} catch (Exception e) {
Status = e.ToString();

return Status;

}

Did you spot the bugs? OK, here they are. The first mistake is connecting to the SQL
database as sa, the sysadmin account. You do not need such a high- powered account to

simply query a table. A small slip-up, and sa can do anything it wants—it can delete or
modify tables, even the master SQL Server table.

Next the sysadmin account has an easy-to-guess password. Third, the password is

embedded in the Web service page. If an attacker accesses this page, she will know the
connection details and know that SQL Server is on the Web service machine.

Perhaps the most dangerous issue is that the code is susceptible to SQL injection because
the attacker can set the ID to a valid value followed by a series of dangerous SQL

statements that are all executed. Also, if the SQL communication fails for some reason, such
as an invalid SQL statement or a connection failure, the Web service will send a great deal

of data back to the attacker, including the text that makes up the SQL statement. This is
simply too much to tell an attacker. In fact, it is of little use to anyone other than a developer.

The code has one last bug—can you spot it? You probably will not because it is subtle.
Imagine that the attacker sends a string to this code that causes an invalid SQL statement to
be built. The SQL classes will throw an exception. However, the connection to SQL Server

will not be closed. Eventually, it will be garbage-collected. But what if the attacker sends
thousands of invalid requests? The connections to SQL Server will be exhausted, and valid
connections will fail. Oops! This could be a wonderful DoS attack.

A Secure Solution

Now let’s look at a version that has multiple layers of defense so that if one defensive
mechanism fails, at least one other will protect the application and the data:

[Sql Cli ent Perm ssionAttribute(SecurityAction.PermtOnly,
Al'l owBl ankPasswor d=f al se)]
[Regi stryPerm ssionAttribute(SecurityAction.PermtOnly,
Read=@ HKEY_LOCAL_MACHI NE\ SOFTWARE\ Shi ppi ng")]

public string SafeGet ShippingStatus(string Id) {

Sql Command cnd = nul |

string Status = "No";
try {
/'l Check for valid shipping ID.
Regex r = new Regex(@ "\ d{10}$");
if ('r.Match(ld). Success)
t hrow new Exception("Invalid I1D");

/]l Get connection string fromregistry.
Sql Connecti on sgl Conn= new Sqgl Connecti on(ConnectionString);

/1 Add shipping |ID paraneter.

string str="sp_HasShi pped"”;

cmd = new Sgl Conmmand(str, sgl Conn);

cnd. ConmandType = CommandType. St or edPr ocedur e;
cnd. Paraneters. Add("@ D", 1 d);

cnd. Connecti on. Qpen();

if ((int)cnd. ExecuteScalar() !'= 0)
Status = "Yes";

} catch (Exception e) {

if (HttpContext.Current.Request. User Host Address ==
"127.0.0.1")

Status = e. ToString();
el se
Status = "Error.";
} finally {
/1 Shut down connection--even on failure.
if (cmd I'= null)
cnd. Connecti on. Cl ose();

return Status;

/'l Get connection string.
internal string ConnectionString {

get {
return (string)Registry
. Local Machi ne
. OpenSubKey (@ SOFTWARE\ Shi ppi ng\ ")
. Get Val ue(" ConnectionString");

}

At first glance, the code looks more complex, but it really is not. Let me explain how this
code is more secure than the first example. (I will hold off on explaining the attributes before
the function call until the end of this section.)

First, this code mandates that a shipping identity number must be exactly 10 digits. This is
indicated using the regular expression N\d{10}$, which looks only for 10-digit numbers
(\d{10}) from the start (") to the end ($) of the input data. By declaring what is valid input and
rejecting everything else, we have already made things safer—an attacker cannot simply
append SQL statements to the shipping ID. (Regular expressions are exposed through
System.Text.RegularExpressions.)

The code includes even more defenses. Notice that the SglConnection object is built from a
connection string from the registry. Also, take a look at the accessor function
ConnectionString. In order to determine this string, an attacker would have to not only
access the source code to the Web Service but also access the appropriate registry key.

The data in the registry key is the connection string:
dat a source=db007a;

user id=shi puser;

passwor d=&ugv4! 26df A- +8;

initial catal og=Shi pping

Notice that the SQL database is now on another computer. An attacker who compromises

the Web service will not gain automatic access to the SQL data. Also, the code does not
connect as sa; instead, it uses a specific account, shipuser, with a strong password. And this
special account has only read and execute access to the appropriate SQL objects. If the
connection from the Web service to the database is compromised, the attacker can run only
a handful of stored procedures and query the appropriate tables; she cannot destroy the
master database.

The SQL statement is not constructed using the insecure string concatenation technique;
rather, the code uses parameterized queries to call a stored procedure. Calling the stored
procedure is faster and more secure than using string concatenation because the database
and table names are not exposed and stored procedures are optimized by the database
engine.

Note that when an error does occur, the user (or attacker) is told nothing unless the request

is local or on the same machine where the Web service resides. If you have physical access
to the Web service computer, you “own” the computer anyway!

Next, the SQL connection is always closed down in the finally handler so that if an exception
is raised in the try/catch body, the connection is gracefully cleaned up, thereby mitigating the
DoS threat.

As promised, | will explain the two security attributes at the start of the function call. The first,
SQLClientPermissionAttribute, allows the SQL Server .NET Data Provider to ensure that a
user has a security level adequate to access a data source—in this case, the use of blank
passwords is forbidden. If you inadvertently attempt to connect to SQL Server using this

code and using a blank password, it will raise an exception. The second attribute,
RegistryPermissionAttribute, limits which registry key or keys can be accessed and to what
degree (read, write, and so on). In this case, only one specific key, which holds the
connection string, can be read. If an attacker tries to make this code access other parts of
the registry, it will fail.

All these mechanisms together lead to a very secure Web service. You should always use
such mechanisms and layer them in such a way that your code is safe from attack.

Summary

In this chapter, | described some of the security features available to you as a Web service
developer. The security features are not defined in the SOAP protocol itself because SOAP
is not restricted to using HTTP; hence your application must leverage existing Web server
security features. It is important that any features you choose are based on data gathered
from a threat modeling exercise. For example, you can use basic, digest, or .NET Passport
authentication to help mitigate client spoofing threats. SSL/TLS can mitigate server spoofing
threats as well as data tampering and information disclosure threats by employing encryption
and message authentication codes. SSL/TLS can also provide support for client
authentication by using optional client authentication certificates. Work is in progress to
provide security features for SOAP messages. This technology is called the Global XML
Web Services Architecture.

Finally | outlined some very common mistakes made by Web application and Web service
developers, most notably those which focus on trusting that user input is well-formed and
benign. If you use input without first validating it for cleanliness, you have a serious security
disaster waiting to happen. Ignore this advice at your peril!

Chapter 11: Debugging Web Services

Overview

It is human nature to make mistakes. Each time | attempt to build a newly written block of
code, the compiler reminds me just how frequently | make mistakes. Unfortunately, some
mistakes will not be caught by the compiler and will surface as runtime bugs.

Many of these bugs will be caught by testers during the QA process. But testers are human
as well, so every now and then a bug will find its way into the released application.

As long as programs are written and tested by humans, there will always be the need to
locate and fix bugs throughout the project lifecycle. Fortunately, numerous resources are at
the developer’s disposal to help with the process of locating bugs.

In this chapter, | talk about many of the debugging tools provided by Microsoft Visual Studio
.NET and the Microsoft .NET platform. If you take the time to learn how touse these tools, |
guarantee that you will find plenty of opportunities to leverage your newfound skills.

Interactive Debugging

One of the most powerful tools in a developer’s arsenal is the debugger. A debugger allows
you to attach to a process, peer into its state, and, depending on the debugger, even control
the flow of the application. If the debugger supports remote debugging, the target process
can be located on another machine.

You have many choices of debuggers for your .NET Web services. The .NET Framework
ships with two debuggers, the CLR Debugger (DbgCLR.exe), which is Microsoft Windows
based, and the Runtime Debugger (CorDbg.exe), which is command-line based. Visual
Studio .NET also has its own debugger. In addition, you can choose from a number of third-
party debuggers.

In this section, | discuss functionality supported by most debuggers. However, my examples
will be based on the Visual Studio .NET debugger.

| assume that you have basic knowledge of how to debug applications. For example, | do not
cover topics such as stepping through code and setting breakpoints. If you are unfamiliar
with these concepts, | suggest you learn about them before proceeding further.

The Basics of Debugging

One of the strengths of Visual Studio .NET is its tight integration with the run- time
environment. For example, when you build an ASP.NET Web service project, Visual Studio
.NET will automatically deploy the application to the Web server.

This integration extends to support for debugging Web services. As you know by now, you
can start debugging a Web service by pressing F5. A reasonable amount of work will be
done for you. Visual Studio .NET will automatically perform the following tasks:

1. Compile the Web service. This will help ensure that the compiled application
matches the underlying source code.

2. Deploy the Web service. Visual Studio .NET will deploy to the Web server the newly
compiled DLL and any other files that have changed. You can deploy the Web
service by using Microsoft FrontPage Server Extensions or by using a file share that
is mapped to the underlying file system hosting the Web service.

3. Launch the .asmx page within the browser. This will cause the ASP.NET worker
process to load the Web service application.

4. Attach to the ASP.NET worker process. To do this, the Visual Studio .NET
debugger locates the correct ASP.NET worker process running the Web service,
even if it is running on a different machine.

The technology that enables Visual Studio .NET to automatically locate and attach to the
remote ASP.NET process that is hosting a Web service has a powerful derivative: While you
are debugging a Web service client, when you get to the line that calls to the Web service
via a proxy, you can press F11 to step into the implementation of the Web service method.
Visual Studio .NET will intercept the call to the Web service, attach to the process, and then
set a breakpoint at the beginning of the method.

This feature is referred to as causality. To facilitate causality, the Web service client must
have appropriate security rights. If the Web service client is an ASP.NET application, the
default account under which the application runs does not have sufficient permissions to
facilitate causality. Therefore, to enable this feature, you must modify the userName and
password attributes of the processModel element in the machine.config file so that the
ASP.NET application calling the Web service runs under an account with administrative
privileges. See Chapter 10 for more information.

After you are finished debugging your managed code application, you can detach from the
process and it will continue to execute. However, if your application also invokes unmanaged
code and you want to debug it as well, you will not be able to detach from the process
without terminating it.

One way to overcome this limitation is to install the dbgproxy service. After you are finished
debugging unmanaged code, dbgproxy will keep the debug handles open for you. You can

then detach from the process without terminating it.

You can install dbgproxy by executing the following commands:
dbgpr oxy —install
net start dbgproxy

The first command installs the dbgproxy service, and the second command starts it.

Remote Debugging

To facilitate some of the remote debugging features described in the previous section, you
must make sure that your environment is properly configured. If you have had, shall we say,
a less than optimal experience configuring remote debugging in previous versions of Visual
Studio, you will be pleasantly surprised by how simple and straightforward this task is in
Visual Studio .NET.

The machine that hosts the remote process must have a collection of COM components
installed. The easiest way to install these components is to install Visual Studio .NET on that
machine. In most cases, especially if the machine is in the production environment, this
solution would be suboptimal, so Visual Studio .NET setup gives you the option of installing
only the remote debugging components.

To install the remote debugging components, insert the Visual Studio .NET setup disk into

the target computer and select the Remote Components Setup link at the bottom of the
opening screen, as shown in the following graphic.

* i Vil ki o T Rstia

Microsoft:

Visual Studio .NET Setup

¥olr Brlcadss

Wi |l 2 T R T L il

Remote debugging is facilitated through DCOM. Therefore, once you have installed the
remote debugging components, you must make sure that you have sufficient permissions to
attach to and debug the target process on the remote machine. In order to simplify this
process, Setup creates a local group on the target machine called Debugger Users.

Users added to the Debugger Users group will have sufficient permissions to conduct a
remote interactive debugging session. However, they also need permissions to attach to the
process itself.

By default, the ASP.NET worker process hosting the Web service will run under the System
user account. Adding yourself to the local Administrators group will give you sufficient

permissions to attach to the worker process. However, if doing so is unacceptable with your
system administrator, work with her to configure the machine to achieve the desired security

exposure.

Web Services—Friendly Call Stack

A call stack is a data structure that is used to keep track of information about nested calls
made by a particular thread within an application. For each nested call, a stack frame is
created and added to the call stack. For example, if the Main method within an application
calls method X on object A and method X in turn calls method Y on object B, you will have a
call stack containing three stack frames, as shown here:

B.Y

A.X

App.Main

The stack frame tells the computer how to return control to the caller once a method has
finished executing. Once the method returns, its stack frame is popped off of the call stack.

The stack frame also contains the parameters that were passed to the method, plus other
housekeeping data. Visual Studio .NET can interpret the individual stack frames on the stack
to obtain information about the current state of a particular thread. When execution of an
application domain is suspended, you can view the following information from within the Call
Stack window:

. The name of the module that contains the implementation of the method

. The names, types, and current value of the method’s parameters

. The line number currently being executed within the method

. The language in which the method was implemented

Knowing the sequence of calls that were made and the value of each parameter that was

passed can be invaluable when you are trying to debug your application. However, if one of
the methods calls into a Web service, the continuity of the call stack will be broken. Because
the Web service will be executed on a different thread, and more than likely on a different
machine, it will have its own call stack.

Visual Studio .NET simplifies debugging applications that span multiple processes and
multiple machines by providing a consolidated view of the call stacks that compose a single
logical thread of execution. You can see the entire call chain by right-clicking in the Call
Stack Window and choosing Include Calls To/ From Other Threads.

To ensure that you have a complete call stack, you must rethrow exceptions correctly within
your application. To rethrow an exception, you call throw without any parameters. If you pass
the exception as a parameter to throw, the stack will unwind to the stack frame to the
method throwing the exception and the final recipient of the exception will not have a
complete stack trace.

Here is an example of two different ways to rethrow an exception:

try

/1 1nplenmentation...

}

cat ch(Syst enmException se)

{
/'l Causes the stack to unwind to this nmethod call
throw se;

}

cat ch(Applicati onException ae)

{
/'l The recipient of the exception will have a full stack trace.
t hr ow;

}

Your application might use code to which you do not hawe the source that improperly throws
an exception. To facilitate obtaining a full stack trace, you can configure Visual Studio .NET
to catch first-chance exceptions. Choose Debug, Exceptions to open the Exceptions dialog
box. Click Common Language Runtime Exceptions, and then select the Break Into The
Debugger option in the When The Exception Is Thrown section, as shown here:

T £l
Erceprora =]n

|+ 5 L e A mptae

o} Nadvee By Biever Uhevks
o (1) W2 Pecnptions

e e e
= i e e e

™ o

¥ s dragron et bt
® ek e g

ConiT

Information the Debugger Needs

The debugger needs certain information in order to perform tasks such as setting
breakpoints and displaying the call stack. This information comes from three primary
sources: the metadata contained within the assembly, the program database, and the JIT
compiler tracking information.

In this section, | explain what types of information the debugger needs and how it uses the
information. | also explain how to ensure that the information is available for debugging a
Web service. Finally | offer recommendations for creating release and debug builds for Web
service projects. The goal for release builds is to create the information that the debugger
needs in order to effectively diagnose problems that might emerge in the production
environment.

Assembly Metadata

From the .NET assembly’s metadata, the debugger needs information about the types
defined within the assembly. The debugger uses this information to display the friendly name
of types, the methods they expose, and the names of instances of types and to populate the
call stack, local watch windows, and so on. This metadata is always contained within a .NET
assembly, so the debugger will always have enough information to display a call stack
composed of friendly names.

Program Database

Some debugging features require more information than what is provided by the metadata
contained within an assembly. For example, the assembly’s metadata does not contain
enough information to allow you to interactively step through the source code that
implements the Web service.

To facilitate source code—level debugging, the debugger needs information about how to
map the program image to its original source code. The program database, which can be
optionally generated by the compiler, contains a mapping between the Microsoft
intermediate language (MSIL) instructions within the assembly and the lines in the source
code to which they relate.

The program database is in a separate file with a .pdb file extension and typically has the
same name as the executable (.dll or .exe) with which it is associated. The .pdb file often
resides in the same directory as its associated .dll or .exe.

The executable and the associated .pdb file generated by the compiler are considered a
matched pair. The debugger will not let you use a .pdb file that is either newer or older than
the executable running in the targeted process. When the compiler generates the executable
and its associated .pdb file, it stamps both of them with a GUID, which the debugger uses to
make sure that the correct .pdb file is loaded.

There is no equivalent mechanism for associating the .pdb file with the \ersion of the source
code from which it was created, so it is possible to interactively debug your application using
an incorrect version of the source code. To avoid this situation, you should maintain tight

version control over the executable, the .pdb fle, and source control. At the very least, you
should check all three into your source control database before deploying the database on
an external machine.

The Visual C# compiler (csc.exe) generates a .pdb file if you specify the /debug switch.
Table 11-1 describes all the variations of the Visual C# compiler /debug switch.

Table 11-1: Visual C# Compiler Debugging Switches

‘ Switch ‘ Description

‘/debug, /debug+, or /debug:full ‘ Specifies that the compiler will generate a .pdb file.
/debug- Specifies that the compiler will not generate a .pdb

file. This is the default setting.

/debug:pdbonly Specifies that the compiler will generate a .pdb file.
However, source-level debugging will be disabled by
default.

The first two items in the table are pretty straightforward. The third item requires further
explanation. In the next section, | discuss why the .pdb file generated by the /debug:pdbonly

switch cannot be used for source-level debugging by default.

You can also use the /optimize switch to specify whether your code will be optimized before
being executed. By default, optimization is disabled—the same as specifying the /optimize-
switch. However, this results in significant performance penalties.

You can enable optimization by specifying the /optimize+ switch. Doing so reduces the
fidelity of source-code debugging, however. For example, code might appear to execute out
of order or not at all. As a result, optimization is often disabled during development and then
enabled before the application ships.

You can specify whether optimization is enabled or whether a .pdb file will be created for a
Visual Studio .NET project by modifying the Generate Debugging Information and Optimize
Code project settings in the Project Settings dialog box. To open this dialog box, select a
project in the Solution Explorer and then choose Project, Properties, or right-click on the
project and choose Properties.

Visual Studio .NET will automatically create two configurations for your project, Debug and
Release. For the Debug configuration, Generate Debugging Information is set to true and
Optimize Code is set to false. For the Release configuration, Generate Debugging
Information is set to false and Optimize Code is set to true.

You will find that .pdb files can be invaluable for diagnosing problems, especially those that
appear only in production. | strongly encourage you to generate .pdb files for every assembly
you release to production. However, before | make recommendations about specific build
settings, | need to paint a more complete picture.

Tracking Information

So far, | have told you only half the story. In the previous section, | discussed the behavior of
the Visual C# complier as it relates to debugging. However, the Visual C# compiler does not
generate the code that is ultimately executed and therefore debugged. It generates MSIL,
and the resulting MSIL is compiled by the JIT compiler to native code before being executed
by the processor.

When you debug a Web service, you attach your debugger to the process that is executing
the output of the JIT compiler. The JIT compiler thus has just as much influence as the
Visual C# compiler does over your ability to interactively debug the code for a Web service.

Recall that the program database generated by the Visual C# compiler maps the generated
MSIL to the original source code. But because the MSIL is compiled by the JIT compiler
before it is executed, the program database does not contain enough information to facilitate
interactive debugging.

To facilitate interactive debugging, the debugger must be able to map the native code
executing within the process to the MSIL and then to the source code. Half of the mapping,

from the MSIL to the source code, is provided by the .pdb file. The other half, from the native
machine code instructions to the MSIL, must be created by the JIT compiler at run time.

The mapping created by the JIT compiler is referred to as tracking information. Tracking

information is generated whenever MSIL is compiled to native code by the JIT compiler. The
debugger uses the combination of the information in the .pdb file and the tracking

information generated by the JIT compiler to facilitate interactive source-code debugging.

With tracking disabled, you cannot perform sourcelevel debugging on the targeted
executable. When source code is compiled using the /debug switch, the resulting assembly
will be marked to enable tracking. The JIT compiler learns of this because the assembly is
decorated with the Debuggable attribute, whose 1sJITTrackingEnabled property is set to
true. When the JIT compiler loads the assembly, it looks for this attribute; the value of true
for its IsJITTrackingEnabled property overrides the default behavior.

So why should you care whether tracking is enabled? Because when tracking is enabled, it
imposes a slight performance penalty when your application is executed. Specifically,
application warm-up is slightly slower because the JIT compiler has to generate the tracking
information in addition to compiling the MSIL the first time a method is called.

Once a method has been JIT compiled, no additional costs are associated with tracking.
Therefore, in most cases the benefits of improved debugging support for the Web service

will outweigh the costs associated with tracking, especially for Web services. An instance of
a Web service usually supports multiple requests from multiple clients, so the costs
associated with generating the tracking information are quickly amortized away.

In some situations, however, you might not want to incur the costs associated with tracking
unless the application is experiencing a problem. You can compile your application using the
/debug:pdbonly switch so that the resulting assembly will have an associated .pdb file
generated for it but will not have the Debuggable attribute’s I1sJITTrackingEnabled property
set to true.

Note that you cannot configure the Visual Studio .NET build properties to invoke the same
behavior that the /debug:pdbonly switch does. If you want to generate a .pdb file and not set
the I1sJITTrackingEnabled property within the assembly, you must use some other means of
building the application.

If you suspect a problem with an application that was compiled using the /debug:pdbonly
switch, you must enable tracking at run time. The two primary ways to enable tracking at run
time are by using the debugger and by configuring an .ini file. Note that with the current
version of .NET, modifications to the IsJITTrackingEnabled property take effect only when
the application is reloaded by the common language runtime. Both methods of configuring
tracking at run time require you to restart your application.

The first method of enabling tracking at run time is by creating an .ini file that is used to set
the JIT compiler debugging options. The .ini file should have the same name as the
application and should reside in the same directory. For example, the .ini file for
MyRemotingWebService.exe would be named MyRemotingWebService.ini. The contents of

the .ini file would look something like this:
[. NET Franework Debuggi ng Control]

CGener at eTr acki ngl nf o=1
Al'l owOptim ze=0

This example configures the JIT compiler to generate tracking information for the application.
As you can see, you can use the .ini file to control whether the JIT compiler generates
optimized code. This example does not allow the JIT compiler to generate optimized native
code.

The second method of enabling tracking at run time is by using a debugger. If the executable
is launched within a debugger such as Visual Studio .NET, the debugger will ensure that
tracking is enabled and optimization is disabled.

You can launch an executable in Visual Studio .NET by opening an existing project of type
Executable Files (*.exe). Select the executable you want to launch within the debugger.
When you start debugging, you will be required to save the newly created Visual Studio
.NET solutions file. Then Visual Studio .NET will launch the application with tracking
enabled.

The two methods of enabling tracking at run time are effective for .NET .exe applications
such as those that host Remoting Web services and clients that interact with Web services.
However, they do not work for applications hosted by ASP.NET, primarily because ASP.NET
applications are hosted within a worker process (aspnet_wp.exe). This worker process is
unmanaged and hosts the common language runtime.

The common language runtime host processes, such as ASP.NET, can programmatically
set the debugging options for the JIT compiler. But the current version of ASP.NET does not
provide a means of setting the debugging options at run time, so if you want to interactively
debug your ASP.NET-hosted Web service, you must build the component using the /debug
option.

The good news is that the performance costs associated with generating the tracking

information are much less relevant with respect to ASP.NET-hosted Web services. Methods
exposed by the Web service tend to be JIT compiled once and then executed many times.
The amortized cost of generating the tracking information becomes insignificant.

| encourage you to compile the release version of your Web services using the /debug
switch. You will not incur a performance penalty once your code has been JIT compiled.

And, in most cases, the ability to perform interactive source-level debugging will far outweigh
the slight performance penalty that tracking incurs during warm-up.

If the overhead related to tracking is a concern for your ASP.NET-hosted Web services,
consider building two release versions of your DLL, one using /debug:pdbonly and one using
/debug. The reason to build a .pdb file for both DLLs is in case future versions of the
ASP.NET runtime allow you to enable tracking at run time.

In general, you should compile the release version of your application using the /optimize+

switch. The optimizations performed by the JIT compiler will reduce the fidelity of interactive
source-level debugging. However, the performance costs associated with disabling
optimization are significant and span the entire lifetime of your application.

Debugging Dynamically Compiled Source Code

Recall that the implementation of a Web service can also be contained in the .as mx file itself.
In this case, the ASP.NET runtime generates the MSIL; you must tell the ASP.NET runtime
to generate the information needed to facilitate interactive source-code debugging.

You can enable support for debugging for a particular .asmx page, an entire directory, or an
entire application. Doing so will cause a program database and tracking information to be
generated at run time. In addition, optimization will be disabled.

You can enable debugging at the page level by setting the Debug attribute in the @
WebService directive. Here is an example:

<@ WebServi ce Debug="true" Language="C#" Cl ass="MWWebService" >
usi ng System
usi ng System Web. Servi ce;

public class MyWbService

{
[WVebMet hod]
public string Hello()
{
return "Hello world.";
}
}

You can also enable debugging using the web.config file. Depending on where it is located,
you can use the web.config file to configure files either within a specific directory or within
the entire application, as shown here:

<configuration>
<system web>
<conpi |l ati on debug="true"/>
</ system web>
</ confi guration>

Enabling debugging also disables optimization, so the Web service will incur a performance
penalty. You should therefore disable debugging in production whenever possible.

Instrumenting Web Services

Although source-level debugging is very powerful for debugging applications, in plenty of
situations it is not practical. For example, if you interactively debug an ASP.NET Web
service, you effectively block all threads from servicing other requests. This is not very
practical if the Web service is being hosted in a production environment and you have no
ability to isolate it.

In such situations, instrumentation can be invaluable. Instrumentation is the process of
generating output directed at the developer or administrator that provides information about
the running state of your Web service.

The .NET Framework offers developers many options for instrumenting Web services and
the applications that consume them. In this section, | cover three techniques that you can
use to instrument your Web service: tracing, the Event Log, and performance counters.

Tracing

Tracing is the process of recording key events during the execution of an application over a
discrete period of time. This information can help you understand the code path taken within
the application. Tracing information can also contain information about the changes made to

the state of the application.

Different levels of tracing are often needed during different phases of a product’s lifecycle.

For example, during development, the information might be quite verbose. But when the
application ships, only a subset of that information might be useful.

The System.Diagnostics namespace contains the Debug and Trace classes, which provide a
straightforward means of outputting tracing information from your application. These two

classes exhibit similar behavior. In fact, internally they both forward their calls to
corresponding static methods exposed by the private Tracelnternal class. The primary

difference between them is that the Debug class is intended for use during development and
the Trace class is intended for use throughout the lifecycle of the application.

Table 11-2 describes the properties and methods exposed by the Debug and Trace classes.
I discuss most of the properties and methods in greater detail later in this section.

Table 11-2: Properties and Methods of the Debug and Trace Classes

| Property ‘ Description

| AutoFlush ‘ Specifies whether the Flush method should be called after every write

| IndentLevel ‘ Specifies the level of indentation for writes

| IndentSize ‘ Specifies the number of spaces of a single indent

| Listeners ‘ Specifies the collection of listeners that monitor the debug output

| Method ‘ Description

Assert Evaluates an expression and then displays the call stack and an optional

user-defined message in a message box if the expression is false

| Close ‘ Flushes the output buffer and then closes the listener
| Fail ‘ Displays the call stack and a user-defined message in a message box
| Flush ‘ Flushes the output buffer to the collection of listeners
| Indent ‘ Increases the value of the IndentLevel property by one
| Unindent ‘ Decreases the value of the IndentLevel property by one
|Write ‘ Writes information to the collection of listeners
|WriteLine ‘ Writes information and a linefeed to the collection of listeners
Writes information and a linefeed to the collection of listeners if an

‘ WriteLinelf

expression evaluates totrue

Each of the static methods exposed by the Debug and Trace classes is decorated with the

Conditional attribute. This attribute controls whether a call made to a particular method is
executed based on the presence of a particular preprocessing symbol.

The methods exposed by the Debug class are executed only if the DEBUG symbol is
defined. The methods exposed by the Trace class are executed only if the TRACE symbol is
defined.

You define symbols at compile time; you can define them within the source code or using a

compiler switch. The compiler will generate MSIL to call a method decorated with the
Conditional attribute only if the required symbol is defined. For example, a call to

Debug.WriteLine will not be compiled into MSIL unless the DEBUG symbol is defined.

With Visual C#, you can use the #define directive to define a symbol scoped to a particular
file. For example, the following code defines both the DEBUG and TRACE symbols:

#def i ne DEBUG
#defi ne TRACE

You can also define a symbol using the Visual C# compiler /define switch. Symbols defined
in this manner are scoped to all the source code files compiled into the executable. The

following command defines the DEBUG and TRACE symbols at compile time:
csc /define: DEBUG TRACE /target:library MyWebServi cel nmpl.cs

In general, the DEBUG and TRACE symbols are defined when you compile debug builds,
and only the TRACE symbol is defined when you compile release builds. This is the default
in Visual Studio .NET. You can change which symbols are defined at compile time by
configuring the project settings under Configuration Properties, Build, and then Conditional
Compilation Constants.

Now that you know how to set the appropriate symbols, let's look at how to use of some of
the key methods exposed by the Debug and Trace classes.

Asserting Errors

Developers often have to strike a balance between writing robust code and maximizing an

application’s performance. In an effort to write robust code, they often find themselves
writing a considerable amount of code that evaluates the state of the application.

Rich validation code can be invaluable for tracking down issues quickly during development,
but an overabundance of validation code can affect the application’s performance. In
general, publicly exposed Web services should validate the input parameters received from
the client. But in certain situations it is not necessary to validate member variables that are
considered implementation details of the Web service.

In cases where it makes sense to perform validation only during development, you can use
the Assert method exposed by the Debug and Trace classes. This method evaluates an
expression, and if the expression evaluates to false, it returns information about the
assertion. The error information includes text defined by the application as well as a dump of
the call stack.

The ability to programmatically generate error information that includes a dump of the call
stack is quite handy. There might be certain places in your code where you always want to
do this. For these situations, you can call the Fail method of the Debug and Trace classes.
Calling Fail is the equivalent of calling Assert where the expression always evaluates to
false.

Let's take a look at an example. The following code demonstrates the use of the Assert and
Fail methods:

#def i ne DEBUG
usi ng System Web. Servi ces;
usi ng System Di aghosti cs;

public class |Insurance

{
[WebMet hod]

public doubl e Cal cul ateRate(int age, bool snoker)

{
StreanReader stream = File. OpenText("RateTable.txt");
Debug. Assert ((stream Peak() == -1),

"Error reading the rate table.",
"The rate table appears to be enpty.");

try
{
/1 1nplenmentation...
}
cat ch(Exception e)
{
Debug. Fai | ("Unhandl ed exception.");
t hr ow;
}

}

The code generates an assertion if the RateTable.txt file is empty or if an unhandled
exception is caught.

Because the Assert and Fail methods are called within a Web service, there is an issue with
the default behavior of these methods. By default, the Assert and Fail methods display

dialog boxes if the expression evaluates to false. But this is obviously not practical for
server-side code. You can alter the web.config file to redirect the output to a log file, as
shown here:

<configuration>
<system di agnosti cs>
<assert assertui enabl ed="fal se"
| ogfil ename="c:\ Logs\Assert.log"/>

</ system di agnosti cs>
<l-- The rest of the configuration information... -->

</ confi guration>

This portion of the web.config file specifies an assert element to alter the default behavior of
the Assert and Fail methods. First | set the assertuienabled attribute to false to specify that
an assertion should not result in the display of a modal dialog box. | then specify the file
where the asserts will be written using the logfilename attribute. | also need to create the
Logs directory and give the ASPNET user sufficient permissions to create and write to the
Assert.log file because, by default, the ASPNET user does not have permissions to write to
the file system.

Finally, note that the default behavior of the Assert and Trace methods is to ignore the error
and continue. For this reason, do not use the Assert and Fail methods as a substitute for
throwing an exception.

Conditional Preprocessor Directives

314

Recall that the Conditional attribute provides a means of defining methods that should be
called only if a particular preprocessing symbol is defined. However, at times you might want
to have finer-grained control over implementation that is compiled into an application when a
particular preprocessing symbol is defined. For example, you might want to have extended
test routines embedded within your code during development. You can gain this finer-
grained control by specifying conditional preprocessor directives within your application.

Conditional preprocessor directives mark blocks of code that will be compiled into MSIL only
if a particular symbol is defined. Table 11-3 describes the key conditional preprocessor
directives used to do this.

Table 11-3: Conditional Preprocessor Directives

Directive Description

#if Begins a conditional compilation block. Code following the #if directive will
be compiled only if the condition evaluates to true.

#else Specifies statements that should be compiled only if the condition specified
by the #if directive evaluates to false.

|#endif ‘ Terminates a conditional compilation block.

|#define ‘ Defines a preprocessing symtol.

| #undef ‘ Negates the definition of a preprocessing symbol.

For public Web services, there is rarely a good reason to return a stack trace to the user in
the event of an exception. A stack trace offers minimal benefit to an external user of your
Web service, plus the information provided by the stack trace can be used against you to
probe for security vulnerabilities within your Web service. During development, however, this
additional information can be helpful for debugging.

The following example uses conditional preprocessor directives to return stack trace
information only if the application was compiled with the DEBUG symbol defined:

#defi ne DEBUG
usi ng System Web. Servi ces;

usi ng System Web. Servi ces. Prot ocol s;

public class |Insurance

{
[WebMet hod]
publ i c doubl e Cal cul ateRate(int age, bool snopker)

{

try
{
/1 1nplenmentation...
}
cat ch(Exception e)
{

#i f DEBUG

t hrow new SoapExcepti on
("An unhandl ed exception was encountered.",

SoapExcepti on. Server Faul t Code, e€);

#el se
t hrow new SoapExcepti on
(" An unhandl ed exception was encountered.",
SoapExcepti on. Server Faul t Code) ;
#endi f
}
/'l 1nplenmentation...
}
}

The example throws a SoapException if an unhandled exception is caught. The data
returned within the SoapException depends on whether the DEBUG symbol is defined. If the
DEBUG symbol is defined, a new instance of the SoapException class is initialized with the
caught exception. If the DEBUG symbol is not defined, a new instance of the class is
initialized with only a generic error message.

Trace Log

So far, | have focused mostly on error conditions. However, instrumenting normal operations
of an application can be equally valuable. The Debug and Trace classes provide a set of
methods and properties for logging tracing information within your application.

Output is written to the log using the Write, WriteLine, and WriteLinelf methods. The Write

method outputs text to the trace log, and WriteLine outputs text followed by a linefeed. If text
should be written to the trace log only if a certain condition is met, you can use the
WriteLinelf method.

The Debug and Trace classes also expose properties and methods to control the format of
the output. You can use the IndentLevel property to set the number of times a new line of
text is indented. The Indent and Unindent methods increment and decrement the
IndentLevel property, respectively. The IndentSize property specifies the number of spaces
in an indent.

You can specify when the output buffer will be flushed to the trace log by calling the Flush
method. You can also set the AutoFlush property to true to cause the output buffer to be
flushed after every write to the trace log.

Recall that the Debug and Trace classes defer their implementation to the Tracelnternal

class. Therefore, modifying the static variables using one class affects the other. For
example, setting Debug.IndentSize to 4 also affects the indent size of the Trace class.

The following example shows the use of the trace methods within the context of a Web
service:

#def i ne TRACE
usi ng System Di agnosti cs;

usi ng System Web. Servi ces;

public class WbService

{
public WebService()
{
Trace. | ndent Si ze = 4;
Tr ace. Aut oFl ush = true;
}
[WebMet hod]
public void MyWebMet hod(string param
{
Trace. Wi teLi ne(" MyWebMet hod") ;
Trace. | ndent ();
Trace. WiteLine("Start: " + DateTi ne. Now);
/1 1nplenmentation...
Trace. WitelLine("End: " + DateTi ne. Now);
Trace. Uni ndent () ;
}
}

Both the IndentSize and AutoFlush properties are set within the constructor of the method.

You can also set them at run time within the web.config file, as shown here:
<configuration>
<syst em di agnosti cs>
<trace autoflush="true" indentsize="0"/>
</ system di agnosti cs>
</ confi guration>

You can use the trace element to set the initial value of the AutoFlush and IndentSize
properties. Any changes made to these properties by the application will override these
default settings.

You should be aware of one issue when you call the WriteLinelf method. Consider the
following code fragment:

Trace. WiteLinelf(sonmeCondition, "Sonme error message.",
sonmelLar geCbj ect. ToString());
Because the text that will be written to the logs is passed to the WriteLinelf method, the

someLargeObject object must be serialized to a string even if the condition evaluates to
false. To avoid unnecessary processing, we can rewrite the code as follows :

317

#if TRACE
i f(someCondition)

{
Trace. WitelLine("Sone error nessage.",
sonelLar geQbj ect. ToString());

}

#endi f

The somelLargeObject object will be serialized to a string only if the someCondition variable
is equal to true. This ensures that the costs associated with serializing someLargeObject are
incurred only if the resulting text will be written to the trace log.

Trace Listeners

The Debug and Trace classes support outputting the tracing log to multiple listeners. A

listener must inherit from the TraceListener class. The .NET Framework provides three
listeners: DefaultTraceListener, EventLogTraceListener, and TextWriterTraceListener.

The DefaultTraceListener is added to the collection of listeners by default. It generates
output that can be captured by debuggers for managed and unmanaged code. The tracing
information is sent to managed code debuggers via the Debugger.Log method and to
unmanaged code debuggers by means of the OutputDebugString Win32 API. In the case of
Visual Studio .NET, the output is displayed in the Output window.

You can add or remove listeners using the Listeners property of the Debug and Trace

classes. The following example removes the instance of the DefaultTraceListener and adds
an instance of the TextWriterTraceListener to the collection of listeners:

/1 Renobve instance of the DefaultTraceli stener.
Debug. Li st ener s. Renove(Debug. Li steners[0]);

/1 Add instance of the TextW:iterTraceListener.
System | O FileStreamfs =

System | O. Fil e. OpenWite(@c:\Logs\Tracing.log");
Debug. Li st eners. Add(new Text WiterTraceLi stener(fs));

You can also add or remove listeners at run time. The following example performs the same
task as the previous code, but by modifying the web.config file, as you see here:

<configuration>
<system di agnosti cs>
<trace>
<listeners>
<add nanme="Text"
type="System Di agnostics. Text WiterTraceli stener, Systent
initializeData="c:\Logs\Tracing.log"/>

<renove
type="System Di agnosti cs. Def aul t TracelLi st ener, Systeni'/ >

</listeners>

</trace>
</ system di agnosti cs>

</ confi guration>

In either case, you will need to create the Logs directory and give the ASPNET user
sufficient permissions to create and write to the Tracing.log file because, by default, the
ASPNET user does not have permissions to write to the file system.

Trace Switches

The DEBUG and TRACE preprocessing symbols allow you to configure the level of tracing
generated by an application at compile time. However, sometimes you might need finer-
grained levels of tracing or you might need to change the level of tracing at run time. For
example, you might want to record errors and warnings only under normal operating
conditions, but when an issue arises, you might want to enable more verbose tracing without
having to recompile the code.

You can achieve this functionality by leveraging classes that inherit from the Switch class
within your code. The .NET Framework includes two such classes, BooleanSwitch and
TraceSwitch Much like the preprocessing symbols, the BooleanSwitch class provides a
mechanism to indicate whether tracing should be enabled. However, you can indicate this at
run time by modifying the application configuration file.

For example, suppose | want to create an instance of the BooleanSwitch class that allows
me to control whether trace information is displayed about when the beginning and ending of

a method is reached.
usi ng System
usi ng System Di agnosti cs;

public class Application

{

private static Bool eanSwitch profil eMethodsSwitch =
new Bool eanSwi tch("Profil eMet hods", "Controls whether
start and end tines are displayed for each method.");

static public void Main(string[] args)
{
Application. DoSonet hing("test", 3);

private void DoSonething(string paraml, int paranR)

{
Trace. WiteLinelf(profileMethodsSwi tch. Enabl ed,

"Start DoSonething: " + DateTi ne. Now);

/1 1nplenmentation...

Trace. WiteLinelf(profileMethodsSwi tch. Enabl ed,
"End DoSonmething: " + DateTinme.Now);

}

| define a BooleanSwitch to determine whether method-profiling information should be

written to the tracing log. First | create a static variable of type BooleanSwitch and define the
name and description of the switch within the constructor. When the switch’s constructor is
called, it will read the application configuration file to determine its value ¢rue or false).

Next | use profileMethodsSwitch as the condition of the calls to WriteLinelf that display
method profile information. Notice that this switch can be used by the WriteLinelf method of
both the Trace and Debug classes. For that matter, the switch can be specified by any
conditional statement within the application.

Once the switch has been defined, you can configure it within the application’s configuration
file. The configuration file shown on the next page enables the ProfileMethods switch.

<configuration>
<syst em di agnosti cs>
<swi t ches>
<add nanme="TraceMet hods" val ue="1" />
</ swi t ches>
</ system di agnosti cs>
</ confi guration>

| enable the TraceMethods switch by specifying an add element with its name attribute set to
the same string used to initialize the constructor of the switch. If the TraceMethods switch is
not listed in the configuration file, the default value will be O or false.

If you want to achieve more granularity when you configure which tracing information to

display, you can use the TraceSwitch class. You can set an instance of a TraceSwitch class
to a numeric value to indicate the level of tracing information that should be displayed.

The TraceSwitch class supports five levels of tracing, from 0 through 4. Table 11-4 describes
these tracing levels.

Table 11-4: Properties and Their Associated Tracing Levels

| Property | Tracing Level ‘ Description

| N/A | 0 ‘ Tracing is turned off.

| TraceError | 1 ‘ Error messages only.

| TraceWarning | 2 ‘ Warning and error messages.

| Tracelnfo | 3 ‘ Informational, warning, and error messages.
| TraceVerbose | 4 ‘ Verbose.

Setting an instance of the TraceSwitch class to a particular value is cumulative. For

example, if the value is set to 3, not only is Tracelnfo enabled, but TraceWarning and
TraceError are enabled as well.

Event Log

Some tracing information should be recorded regardless of switch settings or what
preprocessing symbols are defined. You should trace, for example, a critical error
encountered by a Web service that needs the immediate attention of a system administrator.

Critical information about the execution of an application should be written to the Event Log.
The Event Log provides a common repository for storing events from multiple sources. By
default, the system has three logs: the Application Log, the Security Log, and the System
Log. Events raised by your application should typically be posted to the Application Log.

Because the Event Log is an infrastructure component provided by the operating system, it
comes with supporting infrastructure that you would otherwise have to create yourself. For
example, an Event Log Service will automatically control the size of individual logs so that
you never have to truncate the log yourself. You can use the Event Log Viewer to view and
sort the entries in the log. You can also obtain additional tools that operate on the Event Log
and perform such tasks as notifying the system administrator in the event of an application
failure.

You can use the EventLog class to post messages to the Event Log. But before you write to
the Event Log, you must first register an event source. The event source is usually
associated with your application. The following code shows how to register an event source:

i f(! EventlLog. SourceExi sts("My Web Service"))

{
Event Log. Creat eEvent Source("My Web Service", "Application");

}

The preceding code first determines whether a particular event source is already registered.

If it is not, the code will register it. You can then write entries to the Event Log, as shown in
this code:

EventLog. WiteEntry("My Web Service",
"Unabl e to connect to the database", EventLogEntryType.Error);

This code writes a warning event to the Application Log. The three categories of events are
errors, warnings, and informational events. You can also include additional information with

the event, including an application-defined event ID and category ID as well as raw binary
data that can be helpful when you try to diagnose the problem.

By default, the ASPNET user does not have permissions to write to the event log. To provide
these permissions, set the
\WHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Application\Rest
rictGuestAccess registry key to 0 and reboot the machine.

By default, the ASPNET user also does not have permissions to create event sources. You
can overcome this limitation by registering the event source as part of the installation
procedure of your Web service. If you want to register event sources at run time, you need to
grant the ASPNET user read/write permissions to the
WHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog registry key as
well as all of its subkeys.

The EventLog class also supports additional functionality such as receiving notification when
a new entry is created. Table 11-5 describes the properties, methods, and event exposed by
the EventLog class.

Table 11-5: Class Properties, Methods, and Event

Property

Description

EnableRaisingEvents

Specifies whether the instance of the EventLog class will
receive EntryWritten event notifications

Entries Retrieves a collection of instances of the EventLogEntry
class
| Log ‘ Specifies the name of the event log that will be accessed
| LogDisplayName ‘ Retrieves the friendly name of the event log

MachineName

Specifies the name of the machine where the targeted
event log resides

Source Specifies the name of the source of the events written to
the event log
| Method ‘ Description
| Clear ‘ Removes all entries from the targeted event log
| Close ‘ Closes the handle to the event log
| CreateEventSource ‘ Registers a new event source within the system registry
| Delete ‘ Deletes the specified event log

| DeleteEventSource

‘ Unregisters a new event source

| Exists

‘ Indicates whether the specified event log exists

GetEventLogs

LogNameFromSourceName

Retrieves an array of EventLog objects from the targeted
machine

Retrieves the name of the Event Log associated with a
particular event source

| SourceExists

‘ Indicates whether the specified event source is registered

| WriteEntry ‘ Writes an entry to the event log
| Event ‘ Description
EntryWritten Fires when an event is written to the Event Log on the

local machine

Performance Counters

So far, | have limited my discussion of the methods of instrumentation to asynchronous
forms of communication. The application writes data to a text file or the Event Log, and then
the client opens the information source and reads the data. However, at times the client
might need to monitor the state of the application in real time.

For example, suppose | develop a Web service that accepts purchase orders from my
customers. | might be interested in knowing the number of requests per second that my Web
service receives. Information such as this can be communicated using performance

counters.

As you probably know, many applications publish a lot of data using performance counters.
ASP.NET is no exception. It publishes numerous counters about its run-time state, including

the number of applications currently running and the number of worker processes running.

ASP.NET also publishes numerous counters about the run-time state of individual
applications that it is hosting. These counters include the number of requests per second,
the number of requests queued, and the average request execution time.

If the Web service | just described accepts only purchase orders, | can monitor the number
of requests received per second without writing a single line of code. | can simply use an
application that ships with Windows called Performance Monitor. (The steps required to

launch Performance Monitor vary depending on your operating system, so consult online
help.)

With Performance Monitor running, you can add counters that you want to have charted.
First click the button with the plus sign to open the Add Counters dialog box. Select
ASP.NET Applications in the Performance Object drop-down list, and then select the
Requests/Sec counter. Then select the instance that corresponds to the application you
want to monitor. The name of the application will be associated with the name of the
directory in which the application lives.

The Add Counters dialog box should look similar to this:

ddrounters kS

™ Uips local compuier counbats II
% Splevd cramtend b Gt

S L Cloze
[ssHoATS | e

Exglmn

Perfoemancs olwac!; Q
[aseHET Appacsnons -
L [T Alwatances
1+ Solect counders bom ¥ ebact nptances kom st
Flesguesty Mok Fourd
Flequests Succeeded

Recety Timead 0wt
Finguiti Tolal

You can also create your own performance counters by using the
PerformanceCounterCategory and the PerformanceCounter classes. The following example
shows how to use the PerformanceCounterCategory class to register a new performance
counter:

i f(! PerformanceCounter Category. Exi sts("My Web Service"))
{
Per f or manceCount er Cat egory. Create("My Web Service",
“Performance counters published by My Wb Service.",
"Total Purchase Orders Processed",
"The total nunmber of purchase orders processed.");

}

The preceding code registers a category called My Web Service and a counter called Total
Purchase Orders Processed if the category does not already exist.

After the counter is registered, you can publish to it using an instance of the
PerformanceCounter class. The following code creates a performance counter object and

increments the counter by one:

Per f or manceCount er processedPGCs =

new PerformanceCounter("My Wb Service",
"Total Purchase Orders Processed", fal se);

processedPCs. | ncrenent () ;

| create an instance of the PerformanceCounter class and initialize it to enable writes to the

Total Purchase Orders Processed counter. | then increment the counter by 1 by invoking the
object’s Increment method.

This is fine, but my goal is to publish the average number of purchase orders processed per

second. If my Web service exposes more than one Web method, | will not be able to
leverage the Requests/Sec counter exposed by ASP.NET to achieve my purpose. | need to

create another custom counter.

To create this new custom counter, | must leverage the CounterCreationData class to

register the counter. This class allows me to set the type of counter | need. The following
example registers counters to monitor total purchase orders processed as well as the

amount processed per second:
i f(! PerformanceCounterCategory. Exi sts("My Web Service"))
{
Count er Creat i onDat aCol | ecti on counter CDC =
new Count er Creati onDat aCol | ection();
count er CDC. Add(new Count er Creat i onDat a
(" Purchase Orders Processed/ sec",
" The nunber of purchase orders processed per second.",
Per f or manceCount er Type. Rat eOf Count sPer Second32)) ;
count er CDC. Add(new Count er Cr eat i onDat a
("Total Purchase Orders Processed",
" The total nunber of purchase orders processed.",
Per f or manceCount er Type. Nunber Of | t ens32)) ;
Per f or manceCount er Cat egory. Create("My Web Service",
" Performance counters published by My Web Service.",
count er CDC) ;
}

First | create an instance of the CounterCreationDataCollection class that will be used to
pass the counters | want to register. | then create two instances of the CounterCreationData
class to register the counters. Notice that | do not have to write any code to calculate the
average number of purchase order requests per second. This is handled for me by the
Performance Monitor.

By default, the ASPNET user has permissions to write to a particular performance counter
but not to create performance counters and categories. You can overcome this limitation by
registering the performance counters as part of the installation procedure of your Web
service.

324

Sometimes you might want to create performance counters at run time. For example, you
might want to associate an instance of a performance counter with a patrticular instance of
your Web service or possibly with a particular user. In order to register a performance
counter at run time, you need to grant the ASPNET user read/write permissions to the
\HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Perflib registry key as well as all of its subkeys.

Tables 11-6, 11-7, and 11-8 describe the properties and methods exposed by the

CounterCreationData, PerformanceCounter, and PerformanceCounterCategory classes,

respectively.

Table 11-6: CounterCreationData Class Properties

| Property

| Description

| CounterHelp

| Specifies the help string that describes the counter

| CounterName

| Specifies the name of the counter

| CounterType

| Specifies the type of counter

Table 11-7: PerformanceCounter Class Properties and Methods

| Property

‘ Description

| CategoryName

‘ Specifies the name of the category in which the counter is registered

| CounterHelp

‘ Retrieves the counter help text

| CounterName ‘ Specifies the name of the counter
| CounterType ‘ Retrieves the type of the counter
InstanceName Specifies the name of the instance with which the counter is

associated

MachineName

Specifies the name of the machine with which the counter is
associated

| RawValue ‘ Specifies the uncalculated value of this counter

| ReadOnly ‘ Specifies whether the counter is read-only

| Method ‘ Description

| Beginlnit ‘ Used by Visual Studio .NET to start the initialization of a counter

| Close ‘ Closes the counters and releases any acquired resources

| Decrement ‘ Decrements the counter by one within an atomic operation

| EndInit ‘ Used by Visual Studio .NET to end the initialization of a counter

| Increment ‘ Increments the counter by one within an atomic operation

IncrementBy Increments the counter by the specified value within an atomic
operation

| NextSample ‘ Retrieves the uncalculated value of a counter sample

| NextValue ‘ Retrieves the calculated value of a counter sample

| Removelnstance ‘ Removes the category instance associated with the counter

Table 11-8: PerformanceCounterCategory Class Properties and Methods

| Property | Description

| CategoryHelp | Retrieves the category help text

| CategoryName | Specifies the name of the category

| MachineName | Specifies the machine on which the category exists
CounterExists Indicates whether a specific counter is registered under a

particular category

| Create | Registers a category and one or more counters
| Delete | Deletes the category and its registered counters
| Exists | Indicates whether a particular category is registered
| GetCategories | Retrieves the list of registered categories
| GetCounters | Retrieves the list of registered counters for the particular category
| GetlnstanceNames | Retrieves the list of instances for a particular category
InstanceExists Indicates whether a particular instance of the category is
registered
ReadCategory Gets the instance data associated with each counter registered
under the category

Tips and Tricks for Debugging

Some of the information that can aid in your efforts to debug Web services does not clearly
belong in any of the previous sections, so | present it in the following list:

When you use Microsoft Internet Explorer to view documents that are automatically
generated by the runtime (such as WSDL and results returned from the ASP.NET test
harness), you should disable the display of friendly error messages, WSDL, and the
results of any display-friendly error messages. Doing so will allow you to see the actual
error message returned. Simply take the following steps:

. In Internet Explorer, choose Tools, Internet Options.
= On the Advanced tab of the Internet Options dialog box, deselect Show

Friendly HTTP Error Messages.

If Internet Explorer serves you a blank page, view the source. Sometimes an error
message returned by the runtime will not display in the browser. To see these error
messages, view the underlying source directly by clicking the View menu item and then
selecting

View Source.

When you debug a Web service that is accessed through a proxy, you should increase
the timeout value of the proxy to a large value. For ASP.NET proxies that derive from
the SoapHttpClientProtocol class or for Remoting wrapped proxies that derive from the
RemotingClientProxy class, set the Timeout property to -1 (infinity). Before you release
the client application to production, be sure to set the timeout value back to a
reasonable value.

Visual Studio .NET allows you to debug multiple types of code within an application,
including ASP, ASP.NET, unmanaged code, and SQL Server stored procedures. Make
sure that the appropriate debugging options are selected within your project settings.
For example, if you have an ASP.NET Web service that calls unmanaged code and you

want to debug the entire implementation of the Web service, be sure to enable
debugging support for both ASP.NET and unmanaged code.

Summary

This chapter covers interactive source-code debugging, the information needed by the
debugger, and how to instrument your applications.

First | describe some core features of the Visual Studio .NET debugger that help simplify the

task of developing Web services. One of the unique requirements for debugging Web

services is strong support for remote debugging. The key features that Visual Studio .NET

provides for supporting remote debugging include these:

. Visual Studio .NET automatically attaches to the remote ASP.NET process hosting the
Web service.

" It allows you to configure the target server to allow remote debugging.

. It can display a logical call stack that spans multiple threads.

. It ensures that you get a complete call stack when an unhandled exception occurs
within your application.

Next | explain what information the debugger needs in order to perform essential tasks.
Specifically, it needs information for creating a readable call stack; that information is

contained within the metadata in the module that contains the types that compose the call
stack.

Interactive source-code debugging requires mapping between the original source code and

the machine code generated by the JIT compiler. One half of the mapping, between the
source code and the MSIL, is provided by the program database (.pdb) file. The other half of

the mapping, between the MSIL and the native machine code, is provided by the tracking
information generated by the JIT compiler.

The tracking information is generated when the MSIL is JIT compiled into native code.
Because the compiled native code is unaffected by the generation of the tracking
information, the slight performance penalty associated with tracking occurs only during
application warm-up.

You can also specify whether the JIT compiler generates optimized code. If optimization is
turned on, you might experience a loss of fidelity between the compiled machine code and
the original source code. Because you incur a significant performance hit as a result of
generating machine code that is not optimized, | suggest that you enable optimization for
release builds.

Finally I explain the various technologies provided by .NET for instrumenting your Web

services and the client applications that interact with them. | explain the similarities and
differences between the Debug and Trace classes and show you how to add and remove

listeners at compile time as well as at run time.

| also explain how to leverage the Event Log for communicating important information to the
system administrator, and | demonstrate how to use performance counters to publish real-
time information about the current state of the application.

Chapter 12: Scalability and Availability

Overview

The primary reason for developing Web services is so that developers will use them to build
solutions for their customers. No matter how cool or useful your Web service is, it can't
provide any value if it is down. For a Web service to be adopted by developers, it must be
reliable.

As your Web service becomes more popular, it must scale to meet the increasing demands
of its clients, particularly if your Web service either indirectly or directly generates revenue
for your company.

For example, suppose Woodgrove Bank allows its customers to transfer funds electronically
from one account to another. And suppose the bank develops a Web service, called
Banking, that allows its customers to request that funds be transferred. If the Banking Web
service is consumed by personal financial management software packages such as
Microsoft Money, it might need to support hundreds of thousands or possibly millions of
clients.

The overall scalability and availability of a Web service is determined by its weakest link.
Nontrivial Web services often leverage multiple resources such as databases and directory
services. If a particular resource does not scale to meet the needs of the Web service, the
Web service itself will not scale to meet the needs of its clients.

The Banking Web service relies on multiple resources to process a customer’s request.
These resources include a SQL Server database that holds customer account information as
well as a legacy line-of-business (LOB) application that is used to coordinate the transfer of
funds with other banks.

In this chapter, | present techniques for increasing the scalability and availability of your Web
services as well as the resources they use. | also examine scalability and availability from
the perspective of the client and explore ways to minimize the risks associated with using a
Web service that is not under your direct control.

Scaling Your Web Service

To be successful, your Web service must scale to handle an increasing number of client

requests. If your Web service is hosted on the Internet, you might eventually have enormous
numbers of requests from clients from all over the world.

You should establish scalability goals early in the project. One classic mistake is setting
scalability goals based on the average number of requests over a period of time. You should

instead establish goals based on the total number of peak requests.

For example, let's say the Securities Web service has an expected usage of 300,000
requests per month. Assuming a 30-day month, that equates to 10,000 requests per day.
However, 40 percent of the transfers occur on the 1st and 15th days of the month, when
customers typically get paid. This means that the Web service should actually be capable of
handling 60,000 requests per day.

In the following sections, | examine two strategies for scaling a Web service and the
resources it uses: scaling up and scaling out.

Scaling Up

Scaling up a Web service involves moving it to a bigger, faster, more powerful machine to
accommodate increased workloads. One main advantage of this strategy is that it makes the
infrastructure easier to manage: it does not increase the number of servers the system
administrator has to maintain.

One of the main disadvantages of the scale-up strategy is cost. You typically pay premium
prices for higher-end computers, so the cost per transaction for high-end servers is often
higher than for their commodity counterparts. This is further compounded when redundant
servers are required to meet availability requirements.

Another disadvantage of the scale-up strategy is that you can scale only as much as the
fastest machine will allow. Also, high-end servers are often multiprocessor boxes, so
resources must be designed to take advantage of multiprocessors to fully utilize the box.

In general, you should consider a scale-up strategy for resources that are difficult to scale

out. (I address the scale-out strategy in the next section.) For example, stateful resources
such as relational databases are often difficult to scale out, especially if the data is dynamic,
highly relational, and shared across multiple clients.

Recall that the Banking Web service stores all user state within a SQL Server database. You
can often scale up the machine hosting SQL Server and still keep hardware expenditures

within reasonable levels. If so, the scale-up strategy is probably your ideal course of action.

For resources that are difficult to scale up, look for opportunities to minimize the work they
execute. For example, avoid implementing business logic within database stored procedures
or performing data transformations within the database engine itself. Instead, move these
activities out of the database and into a business logic layer that can be more easily scaled

out.

Scaling Out

When scaling up is not feasible, you can scale out a resource by hosting it on a cluster of
machines and then distributing the requests made to that resource across multiple machines

in the cluster. As the load on the resource increases, you can add more computers to the
cluster to accommodate the increase. (I realize that you might be accustomed to a more
specific definition of cluster, but here | use the word in a broader sense, to refer to a group of
computers that are used to host a particular resource.)

One advantage of the scale-out strategy is that you can often achieve near- linear scalability

as you add more computers. The cost per transaction remains relatively constant as the
infrastructure is scaled.

One disadvantage of scaling out is increased complexity. Instead of maintaining a single

box, you must maintain multiple machines in the cluster. For example, you must install and
maintain each Web server in the Web farm.

You can use products such as Microsoft Application Center to help reduce the costs
associated with maintaining multiple machines in a cluster. The primary goal of Application
Center is to allow an administrator to maintain a clustered resource as if it were installed on
a single system. Application Center provides out-of-the-box support for Web-based
applications, so it is well suited for deploying and managing HTTP-based Web services.

Network Load Balancing

A clustering technology known as network load balancing (NLB) involves distributing
requests across the nodes in the cluster at the network protocol level. The client sends a

request to a particular IP address, and the NLB system intercepts the request and ensures
that only one node in the cluster processes it.

Because the requests are handled at the network protocol level, the client sees the resource
as a single system image. The client is oblivious to which node is actually handling the
request, so in most cases it is not required to make any changes in the way the resource is
accessed.

One common use of NLB is in the creation of a Web farm. A Web farm is a cluster of Web

servers that are front-ended by a hardware- or software-based NLB system. Because a Web
farm is designed to handle HTTP requests, you can use it to host an HTTP -based Web
service.

NLB is not limited to distributing HTTP requests; you can use it to distribute network
requests for a variety of protocols, including such non-HTTP resources as an FTP server or
even a Common Internet File System (CIFS) file share.

To ensure that your network load—balanced resource offers the highest degree of availability,
make sure it has the characteristics described in the following three sections.

The Nodes in the Cluster Should Be Independent of One Another Each node needs to
be capable of handling the client’s request independently of the other nodes in the cluster
because any node could fail at any time. Such a failure should not hinder any other nodes
from processing requests.

For example, a node is not independent if it has data stored locally that is required for

completion of the client’s request. If the node fails, no other node in the cluster can complete
the request.

Any Node Should Be Able to Handle Any Request If a request can be handled by any
node in the cluster, the load balancing system can more evenly distribute the requests
across the nodes in the cluster. This characteristic also ensures that nodes can be easily

added or removed, allowing the cluster to be expanded or contracted to meet changes in
demand.

For any node to be able to handle any request, a resource cannot rely on state stored locally

between requests. If the resource is stateful, all requests from a given client must be routed
to the same node in the cluster. The following code shows an example of a stateful Web

service:
usi ng System

usi ng System Web. Servi ces;

cl ass Banking : WebService

{
[WebMet hod(Enabl eSessi on=true)]
public void Initialize(int accountNunber)

{

t hi s. Sessi on[" Account Nunber"] = account Nunber;

[WebMet hod(Enabl eSessi on=true)]
public void Request WreTransfer(bool destinationAccount,

doubl e ampunt)

{
string account Nunmber = this. Session["Account Number"];
/1 Set up bill to be paid via funds
/1l in the designated account....

}

}

This implementation of the Banking Web service relies on session state between the call to
Initialize and the call to RequestWireTransfer. By default, session state is saved locally on
the server, so the call to RequestWireTransfer must be routed to the same node from which
Initialize was called.

You can maintain server affinity based on the client’s IP address, but this approach is
problematic because many clients access the Internet through a cluster of proxy servers,
and it is possible for two requests from the same client to go through two different proxy
servers with two different IP addresses.

In most cases, you can solve the problem by routing all requests from a class C address
space to a particular node in the cluster. However, large ISPs such as AOL might have a
cluster of proxy servers that span multiple class C address spaces. In such cases, a more
sophisticated server affinity strategy is needed, such as the cookie-based system provided
by Microsoft Application Center.

It is best to completely avoid imposing server affinity. In the previous scenario, you can take
two approaches to avoiding server affinity. The first way is to configure ASP.NET session
state so that it is stored on a central server that is accessible to all Web servers in the Web
farm. The second way is to look for opportunities to remove the dependency on session
state altogether. For example, you can require the client to pass the account number with
every call to PayaBill, thereby avoiding the need to implement the Initialize method.

There are a few reasons why you should look for opportunities to avoid using session state.
First, the Web service client must support cookies. As you recall from Chapter 6, ASP.NET
proxies do not support cookies by default. Also, the implementation of PayBill incurs the cost
of a network round-trip to obtain the account number. Finally, the central session state

server introduces a single point of failure to the system.

Requests Should Be Distributed Evenly Across All Nodes in the Cluster How you
distribute requests evenly across all nodes in the cluster is often determined by how
resource intensive it is to process an individual request. If a request is not very CPU or
memory intensive, you can employ a load-balancing mechanism that uses a hash algorithm
or a round-robin algorithm and achieve fairly uniform distribution across all nodes in the
cluster.

NLB is one technology that you can use to distribute lightweight requests across nodes in a
cluster. NLB ships with Windows 2000 Advanced Server and uses a hash algorithm based
on the client’s IP address and port number to determine which node will process the client’s
request.

If requests are CPU or memory intensive, you might want to use a load- balancing system
that routes requests based on utilization of the nodes in a cluster. Such a system monitors

the state of each node and then routes requests to the least-utilized nodes.
Partitioning the Resource

You can use partitioning to provide a scale-out strategy for resources that cannot effectively
be network load balanced. Partitioning means dividing a particular resource across multiple
servers. For example, say | have one database server that handles all client requests for the
Banking Web service. As the load increases, | can split the data contained in the database
across two or more servers based on ranges of account numbers.

Devising a way to partition a resource so that requests are evenly distributed across all the
servers can be a tough challenge. In general, it is easier to partition a resource when you
have a small number of clients that need access to a particular subset of the data that must
be partitioned. Partitioning becomes more challenging when you have a large number of
clients that need access to the same set of data.

For example, a client of the Banking Web service has access only to data associated with its
account number. Therefore, it is relatively easy to partition the data across multiple servers

in the cluster based on ranges of account numbers. However, it is relatively difficult to
partition data in a reporting system that supports ad hoc queries.

In general, it is costly to create and maintain a partitioned resource. Without support from the
application, partitioning usually requires a lot of manual and time-intensive work. Not only do
you have to design and implement a partitioning scheme, but you also have to maintain it.

You also have to constantly monitor the workload of each node in the cluster to ensure that
no nodes are overloaded. When a patrticular node becomes overloaded, you must repartition
the data. For example, a number of highly active accounts might happen to reside within the
same database partition used by the Banking Web service. In that case, you would need to
adjust the ranges of accounts hosted on each partition in the cluster.

SQL Server supports a feature called updateable distributed partitioned views that simplifies
partitioning data contained in one or more tables across multiple servers. However, this
approach makes performing backups and disaster recovery operations more difficult. You
must synchronize backups across each partition to ensure that referential integrity is
maintained. Due to this increased complexity, you should consider partitioning only when
scaling up is not feasible.

Replicating the Resource

The final scale-out strategy | will examine is replication. Replication involves duplicating the
data hosted by a resource across all nodes in the cluster. This is an especially effective
strategy for scaling out resources that provide access to read-only or mostly read-only data.

For example, suppose the Banking Web service has a database table that contains the fees
charged to a client for using its service. Because the fees are relatively static, they can be
replicated on multiple database servers. The implementation of the Web service can then
obtain the fees from any database server in the cluster.

If the data is writable, implementing a replication strategy becomes more complicated. One
issue with replicating writable data is maintaining the coherence of the data across the
nodes in the cluster. Because multiple copies of the data reside within the cluster, you must
ensure that updates made to one node are reflected across the other nodes in the cluster.

You also need to resolve merge conflicts. A merge conflict occurs when the same data is
updated with two different values on two different nodes at the same time. One way to
resolve a merge conflict is to allow the last write to win. This technique is used by Active
Directory. For this strategy to be effective, the nodes in the cluster must have synchronized
clocks.

Another way to resolve merge conflicts is to avoid them altogether. For example, you can
allow writes to occur on only one node in the cluster. However, this scenario is practical only
if the data is read more often than it is written because all writes are performed on one
server.

Another design issue is how replication should be handled by the cluster. Replication takes a
certain amount of time to perform. While replication is occurring, a node in the cluster might
be queried and retrieve the original value. This can cause problems for your application.

For example, suppose a client modifies some data and then views the data to verify the
results. If the data is written to one node in the cluster and then viewed from another node
before the changes have had time to replicate, it will look like the data was not modified.

Some resources, such as SQL Server, support transactional replication order to solve this
problem. When a client adds, modifies, or deletes data on one node in the cluster, the data
can be accessed only after it has been successfully replicated to all other nodes in the
cluster. The downside to transactional replication is that modifications made to replicated
data will take longer to complete as more servers are added to the cluster.

Overcoming Scalability Bottlenecks

Sometimes your Web service will need to access resources that do not scale well. For
example, the Banking Web service needs to coordinate fund transfer requests with other
banks. This task is accomplished via a legacy LOB application.

The LOB application can handle 15,000 requests per day, but our peak load is around
60,000 requests per day. Unfortunately, it is not practical to scale the LOB application to
meet the needs of the Banking Web service. However, recall that if the requests are
averaged across the month, it comes out to only 10,000 requests per day, which is well
under the 15,000requests-per-day maximum load.

What we need is a way to buffer the LOB application from the peak load on the 1st and the
15th of every month. We can accomplish this by placing a queue between the Banking Web
service and the LOB application. Instead of issuing the requests to transfer funds
synchronously, the system queues the requests and the LOB application processes the
requests at a steady pace.

One downside to this technique is that a request received from the Web service to transfer
funds might not be processed promptly by the LOB application. In the case of the Banking
Web service, the 60,000th request received on either the 1st or the 15th will not be
processed until 24 hours later. If you leverage queuing to address scalability issues, you
must manage your clients’ expectations about the time it might take to process their
requests.

Maintaining High Availability

A Web service might be able to scale to handle the volume of requests received from clients,
but it will be useful only if it is up and running. Ensuring that a Web service provides the

necessary level of availability is just as important as ensuring that it can scale to meet the
needs of its clients.

Availability is often defined as the percentage of time the system is up during its scheduled
hours of operation. For example, if a Web service has 99.9 percent availability, that means
the system experiences one or more outages 0.1 percent of the total time the system is
scheduled to be operational.

The percentage of uptime is meaningful only if you know the Web service’s scheduled hours
of operation. For example, a Web service that must be operational 24x7 and requires 99.999
percent uptime can have only 5.3 minutes of downtime per year, including downtime for
maintenance. Compare that to a Web service that needs to be available only between 9
A.M. and 5 P.M. on weekdays. If the Web service requires 99.999 percent uptime, it can
experience only about one minute of unscheduled downtime a year but can have a total of
6656 hours of maintenance per year.

One key factor in creating a highly available Web service is to ensure that there are no

single points of failure. This encompasses every resource used by the Web service—
including the server that hosts the Web service, the network elements responsible for routing

the requests to the Web service, and the power for the network elements and servers.

Once you have determined that there are no single points of failure, you need to ensure that
if one of the components should fail, the infrastructure supporting the Web service is still
capable of carrying the entire load. For example, if the cluster hosting your Web service is
front-ended by two network routers, you should ensure that a single router is capable of
handling the network traffic.

When you are planning the maximum capacity that any one element within the system
should carry, take into consideration the total cumulative effect of that one element. For
example, suppose during normal operations you have two servers within the cluster that are
actively servicing client requests. When determining the amount of memory that should be
installed in each system, take into account issues such as memory fragmentation. If each
node is running at 50 percent memory usage and one node fails, the other node might not
be able to handle the additional requests due to memory fragmentation. (Note that this is
less of an issue with managed applications since the Garbage Collector is capable of
compacting the heap.)

More important, you must ensure that the necessary procedures are in place for

administering and maintaining a highly available Web service. These include a solid disaster
recovery plan, documentation of the server configuration, and a solid change management

strategy.

In short, you should make sure that your Web service is managed by qualified
administrators. You can find many excellent resources for administrators that examine best
practices for managing highly available applications. One of them is the Microsoft Operations

Framework (MOF); you can find information about it at http://www.microsoft.com/mof.

Next | provide a high-level overview of the software and hardware required to create a highly
available Web service. Then | explain some of the paradigm shifts you should make when
you program against a highly available resource.

Highly Available Scale-Up Resources

By definition, a resource that relies on the scale-up strategy is a single point of failure. If the

server hosting the resource goes down, the resource is no longer available. To achieve high
scalability for a resource hosted on a single server, you can use a failover cluster.

A failover cluster is composed of multiple machines; one machine is active, and one or more
machines serve as backups. If the active machine is unable to service requests, a backup

machine is brought on line and client requests are automatically directed to it.

For Windows, the predominant failover cluster platform is Microsoft Clustering Service
(MSCS). MSCS ships with both Windows 2000 Advanced Server and Windows 2000
Datacenter Server. The former supports two-node clusters, and the latter supports four-node
clusters.

Any resource can be hosted on an MSCS cluster, but only MSCS-aware resources can take
full advantage of the functionality provided by an MSCS cluster. A number of resources are

cluster aware, including SQL Server, MSMQ, and NTFS file shares.

MSCS supports the “shared nothing” model in which each node in the cluster has its own
system bus and access to disk subsystems and the network. In general, the active node in
the cluster is given exclusive access to a particular disk subsystem. You can access specific
data on a particular resource only through one node of the cluster at any given time.

If a disk subsystem contains data used by the resource to process client requests, it must be
accessible by every node in the cluster. If the active node fails, MSCS will designate another
node in the cluster to serve as the active node. As part of the failover process, the new

active node will gain exclusive access to the disk subsystem.

The disk subsystem containing the data necessary to process client requests is a single
point of failure. If the disk subsystem fails, none of the nodes in the cluster will be able to
process client requests. Therefore, the disk subsystem is usually hosted on a RAID 5 disk
array.

MSCS Components

MSCS has three primary components: the Cluster service, the Resource Monitor, and the
Resource DLL.

The Cluster service is a Windows NT service that is responsible for the overall control of the

cluster. It has the following responsibilities:

. Monitoring the status of the nodes in the cluster

. Coordinating the initialization and cleanup process when nodes are added and
removed from the cluster

" Maintaining a database that contains information about the cluster, including the
cluster’'s name and resource types installed on the cluster

The Resource Monitor enables communication between the Cluster service and one or more

resources hosted on a node in the cluster. If the Cluster service fails, the Resource Monitor
is responsible for taking the resources on a particular node off line.

The Resource Monitor is hosted within its own process. This prevents a misbehaving
resource from taking down the cluster. In addition, multiple Resource Monitors can be
hosted on a particular node. If you have a resource hosted on the MSCS cluster that is
particularly unstable, you can configure it within its own Resource Monitor.

Cluster-aware resources have their own Resource DLL that is installed on each node in the
cluster. The Resource DLL is loaded by the Resource Monitor and is accessed via a well-
known set of interfaces defined by the Cluster API. These interfaces enable the Cluster
service to obtain information about the resource and also allow the Resource Monitor to tell
the Resource DLL to take the resource on line or off line.

If your Web service will leverage a clustered resource in production, it is often helpful to
develop against a clustered resource within the development environment. However,
installing production-quality clustering hardware in a development environment is often
prohibitively expensive. An alternative is to install SCSI adapters in two servers and connect
them to an external SCSI disk drive. After you get MSCS installed and running, you can
install any number of MSCS resources on the cluster.

Highly Available Scale-Out Resources

Although scale-out resources are hosted on multiple servers, basic scale-out strategies do
not inherently provide high availability. Ensuring that a resource deployed using the scale-
out strategy is fault tolerant takes deliberate planning.

Partitioned resources are not fault tolerant. A node hosts a portion of the resource, and if the
node is no longer available, the portion of the resource hosted by the node is no longer
available. Each node within a partitioned resource is a single point of failure.

To ensure that a partitioned resource is fault tolerant, you must create a failover cluster for
each node. For example, if the resource is partitioned across five servers, you must create
and maintain five failover clusters. This bolsters the argument for avoiding partitioned
resources whenever possible.

What might be less obvious is that a network load-balanced cluster is not inherently fault
tolerant. The NLB system must know whether the resource itself is on line. For example, if a
node hosting the Banking Web service loses its connection to the database, it returns a
SOAP exception to the user. Because IP traffic can still be routed to the node, the NLB
system continues to route requests to the instance of the Web service that is unable to
connect to the database.

NLB algorithms that route requests based on server utilization can worsen the problem by
actually increasing the number of requests routed to the troubled node. For example,
suppose the NLB system used to route requests to the Banking Web service routes requests
to the node with the lowest CPU uitilization. And suppose the HTTP service stops on one of
the nodes in the cluster and therefore can no longer process requests. Its CPU utilization will
drop significantly because the server is no longer processing requests. As a result, the NLB
system will route even more requests to the disabled Web server because it has very low
CPU utilization compared to the other nodes in the cluster.

The algorithm used to detect when a node is no longer able to process requests is usually
specific to the resource that is being load balanced. You can use products such as Microsoft
Application Center to monitor nodes in a cluster to ensure that they are capable of
processing requests.

You can configure Microsoft Application Center to periodically send each node in the cluster

an HTTP request and parse the response to ensure that a success message is returned. If a
success message is not returned, Microsoft Application Center will communicate with the

NLB system to remove the node from the cluster.

If you are on a budget, you can use the HTTPMon utility that ships with the Windows 2000
Resource Kit to monitor nodes in a cluster. HTTPMon is not as feature rich or as easy to use
as Microsoft Application Center, but it monitors Web servers within an NLB cluster by
posting HTTP requests and parsing the results. If an unexpected result is received, the node
is removed from the cluster.

Programming Against a Highly Available Resource

One common characteristic shared by load-balanced clusters and failover clusters is that
they are generally invisible to the client. The client should not be able to tell the difference
between a clustered resource and a stand-alone server. The client should use the same API
regardless of whether the resource is clustered.

Even though the method of accessing a clustered resource does not change, you take
special measures to make sure that you maximize the benefits of programming against a
highly available clustered resource. Here are some of these measures:

" When a request made to the resource fails, retry the request. Most high-availability
technologies are reactive and will remove a machine from the cluster only when a
request made to that machine fails, so be sure you have the appropriate retry logic
within your application.

. Take into account the time it takes for the clustered resource to recover from a
failure. When you retry the request, be aware of the time it takes for the cluster to
recover from a server failure. For example, if a server fails in an NLB cluster, by default
it will take at least five seconds for the other servers in the cluster to start the
convergence process to recover from the failure. Depending on the resource, an MSCS
cluster can take considerably longer to recover from a failure. If the application performs
a single retry without regard to time, the application will fail and therefore not exploit the
availability the cluster offers.

" Take into account state that might not be automatically rehydrated on the new
server. You must take into account any state that cannot be failed over to another
node in the cluster if a server in the cluster fails while the client is in the middle of a
session with a resource that maintains state. Any resource that requires server affinity
falls into this category. If the resource is a Web service, it is an excellent candidate to be
refactored so that requests made to it are atomic and any state persisted between
requests is saved to a data store that is accessible by other nodes in the cluster.

Third-Party Web Services and Availability

Web services enable you to leverage functionality exposed by third-party Web services via
the Internet. However, the overall availability of your application will be affected by the
availability of the third-party Web services. In this section, | offer some techniques you can
use to help ensure that a third-party Web service does not adversely affect your application’s
uptime.

One option is to eliminate dependence on a third-party Web service altogether by
reproducing its functionality in house. However, you should weigh the potential benefits of
increased control against the time and cost this approach will require. For example, the
Microsoft TerraServer .NET Web service provides access to terabytes of satellite images.
Reproducing this functionality would be very expensive and time intensive.

In addition, the third-party Web service might actually provide higher availability than the
client application that uses it. High availability requires a discipline that few IT organizations
have mastered. In other words, | anticipate a strong market for reliable third-party Web
services that meet a business need.

If you have decided to leverage a third-party Web service, consider establishing a service-
level agreement (SLA) with the provider. An SLA is a contract between you and the Web
service provider that defines the service level you expect (uptime, response time, and so
forth). If the service level is not met, penalties are often imposed on the Web service
provider. Penalties can range from waiving the fees for accessing the Web service based on
the amount of time the Web service is down to compensation based on the financial impact
on your business.

Even if you choose a reliable provider and draft a strong SLA, outages can still occur. You
might consider implementing a strategy so that if the third-party Web service becomes

unavailable, the outage will not adversely affect your clients. In the next sections, | examine
two such strategies: failing over to an alternative Web service and implementing an offline
mode.

Failing Over to an Alternative Web Service

When practical, you can consider forwarding failed requests to an alternative Web service.
For example, say that Woodgrove Bank also hosts a Stock Quote Web service that you use
within your application. If the Web service goes down and is no longer returning stock
guotes, you can obtain the stock price from another Web service rather than return an error
to the client. The following code shows a relatively simple failover technique:

usi ng System
usi ng System Threadi ng;

public class StockQuoteProxy

{
bool useBackup = fal se;
Wbodgr oveProxy primry = new WbodgroveProxy();
Pr osewar eProxy backup = new ProsewareProxy();

| declare two proxy objects for accessing the Stock Quote Web service, one exposed by
Woodgrove Bank and one exposed by Proseware Bank. | also declare a Boolean field to
indicate whether the proxy should fail over and use the backup proxy object.

public double GetQuote(string symbol)
{
i f(! useBackup)
{
try
{
/1l Qbtain quote fromprinmary proxy.
return primry. Get Quot e(synbol);
}

Next | define the GetQuote method. By default, it will attempt to obtain a quote for the
specified stock symbol via the primary proxy object.

catch(Exception e)
{
/1 Fail over to the backup proxy.

useBackup = true;

/'l Configure object to revert to the primary proxy
/1l in 15 m nutes.

Thread thread = new Thread(new
ThreadStart(this. Reset));

thread. Start();

/1 Obtain quote from backup proxy.
return backup. Get Quot e(synbol);

}

If the primary proxy object throws an exception, | set the useBackup property to true so that

the instance of StockQuoteProxy will fail over to the backup proxy object. A new thread will
also be spawned, with the responsibility of reverting to the primary proxy object in 15

minutes. Finally the backup proxy will be used to try to obtain the quote.
el se
{
/1 Obtain quote from backup proxy.
return backup. Get Quot e(synbol) ;

}

If the GetQuote method is called when useBackup is set to false, the backup proxy is
immediately called.

private void Reset ()
{
Thr ead. Sl eep(15000);

useBackup = fal se;

}

Finally I implement the Reset method. This method is invoked within its own thread, where it
waits for 15 minutes and then sets the useBackup field back to false. The next time the
GetQuote method on the instance of the StockQuoteProxy class is called, the object will
attempt to obtain the quote from the primary proxy.

Another alternative is to leverage UDDI. If the Web service supports a standard interface

that is published in UDDI, you can query the UDDI directory to locate alternatives if your
primary Web service becomes unavailable. The following code demonstrates this technique:

usi ng System

usi ng System Thr eadi ng;

usi ng M crosoft. Uddi;

usi ng M crosoft. Uddi . Bi ndi ng;

public class StockQuot eProxy2
{

primaryUrl = "http://ww. woodgrove. conf St ockQuot e. asnmx";

string [] backupUrls;
i nt backupUrllndex = O;

Wbodgr ovePr oxy proxy = new Wbodgr ovePr oxy();

public StockQuot eProxy2()

{
Inquire. Ul = "http://uddi.mcrosoft.cont;

/1 Find all bindingTenplate entities that expose
/'l the StockQuote interface
Fi ndBi ndi ng fi ndBi ndi ng = new Fi ndBi ndi ng();

findBi ndi ng. TMbdel Keys. Add(" uui d: 272208dd- 4f 22- 4df 1- 83a6-
b8f cff936523");

Bi ndi ngDet ai | bi ndi ngDetail = findBindi ng. Send();

/'l Popul ate the array of backup URLs.

i nt count = bindingDetail.Bindi ngTenpl at es. Count;
proxyUrls = new int[count];

for(int i = 1; i < count; i++)

{

proxyUrl s[i] = bindi ngTenpl ate. AccessPoi nt. Text;

public doubl e GetQuote(string synbol)
{
i f(! useBackup)
{
try
{
// Obtain quote from primry proxy.
proxy.Url = primaryUrl
return proxy. CGet Quot e(synbol);
}
cat ch(Exception e)
{
/1l Fail over to the backup proxy.
useBackup = true

/1l Configure object to revert to the primry proxy

// in 15 ninutes.

Thread thread = new Thread(new
ThreadStart(this. Reset));

thread. Start();

/1 Obtain quote from backup proxy.
return this.Get Quote(synbol);

}

If the primary proxy object throws an exception, the useBackup property is set to true so that
the instance of StockQuoteProxy will fail over to the backup proxy object. A new thread will

also be spawned, with the responsibility to revert back to the primary proxy object in 15
minutes. Finally the backup proxy is used to try to obtain the quote.

el se

{
/1 Obtain quote from backup proxy.

proxy. Ul = backupUrl s[backupUrl | ndex];

try
{
return this. GetQote(synbol);
}
cat ch(Exception e)
{
/1 1f there is another backup proxy, call it.
/'l Oherw se, rethrow the exception.
i f (backupUrls. NextUrl)
{
| ock(backupUrl s)
{
i f(backupUrls.Position < (backupUrls.Count - 1))
{
backupUrl s
backupUrl | ndex ++;
i f(backupUrllndex < (backupUrls. Count-1))
{
t hr ow;
}
return this. Get Quote(synbol);
}

Al

}

If the GetQuote method is called when useBackup is set to false, the backup proxy will
immediately be called.

private void Reset()

{
Thr ead. Sl eep(15000) ;

useBackup = fal se;

}

Finally I implement the Reset method. As in the previous example, the Reset method causes
the instance of the StockQuote2Proxy class to retry the primary proxy after 15 minutes.
Notice that the Reset method does not reset the index for the backup proxy. If the primary
proxy fails again, the current backup proxy will once again be called.

Creating an Offline Mode of Operation

In some cases, using an alternative Web service is not practical. For example, | cannot use
another bank’s Web service to modify the banking services | set up with Woodgrove Bank. In
these situations, you should determine whether you can provide an offline mode for
interacting with the Web service.

When you consider your offline strategy, take a hard look at the synchronous interactions
with the Web service and determine whether they can be performed asynchronously. For
example, the client application for the Banking Web service might allow users to request
fund transfers. If the request is not honored within a specified period of time, the client can
be notified.

When the client issues a request to transfer funds, the request will be queued on the client. If
the Banking Web service is on line, the request will immediately be taken off the queue and
processed. If the Web service is off line, the request will stay queued until the Web service
comes on line or the request has expired. If the request expires, the client will be natified.

Let's say the Banking Web service also allows users to modify their account information,
such as their mailing address. And suppose that the application used to modify the
information presents the customer with a form prepopulated with the current information. The
customer can make the necessary modifications and then submit the updated information.

The client application must first obtain the current state of the customer’s account
information to display it to the user. If the Web service is unavailable, there is no way to
obtain that information.

But obtaining the most current information from a Web service is often not absolutely
necessary. For example, the customer’s account information is relatively static. When the
Web service is on line, the client application can cache the state of the user’s account
information. If the Web service becomes unavailable, the client application can display the
cached data to the user.

After the customer has modified the account information, the client application can submit

the updated information back to the Banking Web service via the queuing method |
described earlier.

Optimizing Performance

The performance of your Web service can significantly affect how well it scales. If your Web
service can host only a handful of clients, scaling out to handle a large number of clients can

quickly turn into an exercise in futility.

When you leverage a resource within your Web service, there is usually a right and a wrong
way to program against it. You should follow recommended best practices for leveraging the
particular resource. Here are a number of best practices for programming against a
database using ADO.NET:

" If a managed provider is available for your database, use it instead of its OLEDB and
ODBC counterparts.

. Use stored procedures instead of dynamically generated SQL statements whenever
possible.

. When you iterate through a large result set, use DataReader instead of DataSet.

You should also design the interface of your Web service with scalability in mind. For
example, try to reduce the number of network round-trips. An interface that supports a small
number of large requests is usually better than one that supports a large number of small
requests.

Also, look for opportunities to reduce the amount of data that is sent across the wire. Avoid
passing parameters by reference because doing so involves sending the parameter to the
server and then back to the client. If the parameters do not need to be returned back to the
client, consider passing instances of value types such as Int32, Boolean, and structures.
Finally, if a value is only returned from the Web service, decorate the parameter with the out
keyword.

Also consider stripping out formatting characters such as tabs, linefeeds, and spaces from
the SOAP messages sent between the client and the server. ASP.NET does this for all
SOAP messages generated by an .asmx file.

Caching

If used properly, caching can significantly increase the performance of your Web services.
You can use caching to reduce the amount of work a Web service needs to perform to
process a request. For example, you might cache a data structure that is expensive to
initialize, such as a large hash table. You might also cache a set of previously calculated
results.

You can also use caching to improve the locality of data used by your Web service.
Whenever you access data over a network, the latency associated with the network can
significantly affect the performance of your Web service. You can greatly reduce the cost of
retrieving that data if you can retrieve it from an in-memory cache instead of going across
the network.

Static read-only data is the best candidate for caching. If the data being cached is not read-
only, you should implement a cache coherency strategy to ensure that the data in the cache
does not become stale.

ASP.NET provides an easy-to-use mechanism for caching the response from a Web service
for a period of time. If the Web service receives a similar request, it will return the cached
response to the user instead of executing the particular Web method. This can significantly
improve the performance of some Web services.

You can configure the cache using the CacheDuration property exposed by the WebMethod
attribute. For example, recall that the Banking Web service exposes the GetStockQuote

Web method. Suppose the quote received from the Web service can be delayed up to 20
minutes. The following example illustrates the use of the CacheDuration property:

usi ng System
usi ng System Web. Servi ces;

public cl ass Banking

{
[WebMet hod(CacheDur ati on=1200)]
public doubl e Get StockQuote(string synbol)
{
doubl e price = 0;
// Qbtain the current price for the security....
return price;
}
}

When a request for a particular security is received, the Web method returns the price of the

security. Because the CacheDuration property is set, if a request for the same security is
received in the next 20 minutes (1200 seconds), the ASP.NET runtime will not invoke the
GetStockQuote Web method. Instead, it will return the cached response to the client.

Sometimes it is not practical to cache the entire SOAP response returned from a Web
method. However, you might have opportunities to cache discrete pieces of data used within
the implementation of a Web method. For these situations, the ASP.NET runtime provides a
more generic caching mechanism.

Recall that the Banking Web service charges a fee based on the amount transferred.
Suppose the fee charged to the customer for performing the wire transfer is maintained in an
XML document similar to the one shown here:

<?xm version="1.0"?>
<Fees>
<Fee m nExcl usive="0" maxl| ncl usi ve="100">. 50</ Fee>
<Fee m nExcl usi ve="100" maxl ncl usi ve="250">1. 00</ Fee>
<Fee m nExcl usi ve="250" maxl ncl usi ve="500">1. 50</ Fee>
<Fee m nExcl usi ve="500" naxl| ncl usi ve="1000">2. 00</ Fee>
<Fee m nExcl usi ve="1000" maxl ncl usi ve="999999">3. 00</ Fee>
</ Fees>

The document contains a list of fees based on the amount transferred. The implementation

of the RequestWireTransfer method uses the data in the XML document to determine the
fee that should be charged to the client.

usi ng System

usi ng System Web. Servi ces;
usi ng System Xm ;

usi ng System Confi guration;

public cl ass Banking
{
[WebMet hod]
public void Request WreTransfer(int sourceAccount,
i nt destinati onAccount, doubl e anmount)

/] Obtain the Fees.xm docunent.
Xm Document feesDocunent = new Xm Document () ;
string filePath =
(string)Htt pCont ext. Get AppConfi g(" FeesXm Docunent");
f eesDocument . Load(fi |l ePat h);

/1 Obtain the fee that should be charged.

string xpathQuery = string. Format ("//Fee[@n nExcl usive < {0}
and @maxl ncl usive >= {0}]", anount);

Xm Node result = feesDocunent. Sel ect Si ngl eNode(xpat hQuery);

doubl e fee = doubl e. Parse(result.InnerText);

/1l The rest of the inplenmentation....

}

The RequestWireTransfer Web method first obtains the path for the XML document
containing the fees from the web.config file. After the document is loaded, | issue an XPath
query to retrieve the fee based on the amount to be transferred.

You can add application-specific configuration parameters to the web.config file by adding

add child elements to the appSettings element. The following is a portion of the web.config
file that contains the FeesXmIDocument configuration parameter:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<appSettings>
<add key="FeesXnml Document" val ue="c:\Fees.xm "/>
</ appSettings>

<l-- The rest of the configuration file... -->

</confi guration>

The problem with this implementation is that the Fees.xml document will be loaded every
time the method is called. Because the XML document is relatively static, this is horribly
inefficient.

One way to improve performance is to scope the instance of the XmIDocument class
containing the Fees.xml document to the application. The Fees.xml document can be loaded
into memory once and then used multiple times. The following code illustrates this
technique:

usi ng System

usi ng System Web. Servi ces;
usi ng System Xm ;

usi ng System Confi guration;

public cl ass Banki ng

{

private static feesDocunent;

static Banking()

{
/1 Obtain the Fees.xm docunent.
f eesDocunment = new Xml Docunent () ;
string filePath =

(string)Htt pCont ext. Get AppConfi g(" FeesXm Docunent ") ;

f eesDocunent . Load(fil ePat h);

}

[WebMet hod]

public void RequestWreTransfer(int sourceAccount,
i nt destinati onAccount, double amount)

{
/1l Obtain the fee that should be charged.
string xpathQuery = string. Format ("// Fee[@ri nExcl usive < {0}

and @maxl nclusive >= {0}]", anount);

Xm Node result = feesDocunent. Sel ect Si ngl eNode(xpat hQuery);
doubl e fee = doubl e. Parse(result.InnerText);
/'l The rest of the inplenentation...

}

}

| loaded the XML document within the class’s constructor and set the instance of the
XmlIDocument class to a static variable. The .NET runtime will ensure that the class

constructor is called prior to the creation of an instance of the Banking class. Once
initialized, the feesDocument static variable can be referenced by all subsequent invocations
of the RequestWireTransfer Web method.

The primary issue with this code is that if the rates are updated in the underlying XML
document, they will not be reflected in the cache. What we need is a cache coherence
strategy so that when the underlying data source changes, the entry in the cache will be
updated.

ASP.NET provides a caching mechanism for caching data used by your Web service.
Central to the caching mechanism is the Cache class. An instance of the Cache class is
created within each application domain hosted by the ASP.NET runtime and is accessible
via the HttpContext class.

The following example loads the XML document within the ASP.NET cache and then reloads
the XML document each time it is modified:

usi ng System

usi ng System Web. Cachi ng;
usi ng System Xm ;

usi ng System Confi guration;

cl ass Banki ng

{
[WebMet hod]
public void RequestWreTransfer(int sourceAccount,
int destinati onAccount, double anmount)
{
doubl e fee = Fees. Get Fee(anmount);
/1l The rest of the inplenentation...
}
}

The RequestWireTransfer method calls the static GetFee method on the Fees class to
obtain the fee for the amount. The Fees class encapsulates all interactions with the
ASP.NET cache as well as the business logic used to determine the fee that should be
charged to the client.

cl ass Fees

{
static Fees()
{
Fees. LoadFeesl nt oCache();
}

A7

private static void LoadFeesl ntoCache()
{
/1 Obtain the Fees XM. docunent.
string filePath =
(string)Htt pCont ext. Get AppConfi g(" FeesXm Docunent");
filePath =

(string)ConfigurationSettings. AppSettings["FeesXnl Docunment"];
Xm Docurnent feesDocunment = new Xml Docunent () ;
f eesDocunent . Load(fil ePath);

/'l Create a new cache dependency on the underlying XM file.

CacheDependency cacheDependency = new
CacheDependency(fil ePat h);

/'l Create a new call back object used to invoke the
/'l Fees_OnRenpove net hod when the cache entry is invalidated.
Cachel t enRenpvedCal | back cal | back =

new Cachel t emRenpvedCal | back(Fees_OnRenpved) ;

/'l Load the Fees XM. docunent into the cache.
Ht t pCont ext. Current. Cache. I nsert (" Fees", feesDocunent,
cacheDependency, Cache. NoAbsol ut eExpirati on,

Cache. NoSl i di ngExpi rati on,
CacheltenPriority. Not Renovabl e,

cache);

}

The static constructor is responsible for initializing the cache. This is accomplished by calling
the LoadFeesIntoCache static method.

The LoadFeesIntoCache static method obtains the Fees XML document and loads it into the
ASP.NET cache. In doing so, it creates a dependency on the underlying XML file. If the Fees
XML file is changed, the ASP.NET runtime can invoke a callback.

The CacheDependency class provides multiple overloaded constructors for creating
dependencies on a humber of different types of entities. You can create a dependency on a
file or a directory. You can also create a dependency on a collection of files or directories. If
any file or directory within the collection changes, the entry will be invalidated. Finally, you
can create a dependency on other instances of the CacheDependency class as well as other
cache entries.

In the preceding example, the Fees_OnRemoved method will be invoked when the Fees
XML document is modified. This is accomplished by registering the Fees_OnRemoved
method as a callback.

Finally | create a new entry in the cache by calling the Insert method. The Insert method has
overloads that allow you to set either an exact time or a time window when the entry should

expire.

You can also pass the priority of the cache entry as a parameter to the Insert method. If the
server runs low on memory, the runtime will use the priority to determine which entries to
delete from the cache first. Because | don't want the Fees XML document to be removed
from memory, | set the priority to the NonRemovable static property exposed by the object.

public static doubl e Get Fee(doubl e anount)

{
/1 Obtain the Fees.xm document from the cache.
Xm Docunent feesDocunent = null;
whi | e(feesDocunment == nul)

{
(Xm Docunent) Ht t pCont ext. Current. Cache["Fees"];

/1l Obtain the fee that shoul d be charged.
string xpathQuery = string. Format ("// Fee[@ri nExcl usive < {0}
and @maxl ncl usive >= {0}]", anount);

Xm Node result = feesDocunent. Sel ect Si ngl eNode(xpat hQuery) ;

return doubl e. Parse(result.|nnerText);

}

The GetFee method obtains the Fees XML document from the ASP.NET cache and then
executes an XPath query to determine the fee based on the amount transferred. Notice that |
implemented a spin lock to ensure that | received the Fees XML document instead of a null
reference. This is necessary to avoid a race condition with the code responsible for reloading

the Fees XML document in the event it is changed.
public static void Fees_OnRenpbved(String k, Object v,

Cachel t enRenovedReason r)

Fees. LoadFeesl| nt oCache();

}

Finally I implement the Fees_OnRemoved event handler. If the Fees XML document is
removed from the cache, the LoadFeesIintoCache method will be called to reload the
updated document.

The Cache class exposes properties and methods that you can use to maintain the items

within the cache. Table 12-1 lists the fields, properties, and methods that the Cache class
supports.

Table 12-1: Fields, Properties, and Methods of the Cache Class

Field Description

Table 12-1: Fields, Properties, and Methods of the Cache Class

Field

Description

NoAbsoluteExpiration

A static field intended to be passed to the Insert method.

Indicates that the item in the cache should not expire by a
particular date and time.

NoSlidingExpiration

A static field intended to be passed to the Insert method.
Indicates that the item in the cache should not expire within a
particular interval of time.

| Property ‘ Description

| Count ‘ Retrieves the number of items in the cache.

| Item ‘ Accesses an item in the cache at a specified index.

| Method ‘ Description

|Add ‘ Adds an item to the cache.

| Get ‘ Retrieves an item in the cache at a specified index.

GetEnumerator Retrieves an enumerator used to iterate through the keys of the
items in the cache.

| Insert ‘ Adds an item to the cache.

| Remove ‘ Removes a specified item from the cache.

Summary

The scalability and availability of a Web service can be critical to its success. Not only does
the Web service need to scale and provide high availability, but also, the resources it uses to
process a client’s request cannot hinder its scalability and availability. This chapter
introduces techniques and technologies that you can use to achieve your scalability and
availability goals.

The two primary types of scalability strategies are scale up and scale out. Scale up involves
hosting the resource on a more powerful computer. Scale out involves dividing the work
performed by the resource across multiple computers. | explain how to divide work across
the nodes in a cluster by employing NLB partitioning and replication. Each strategy has its
weaknesses and strengths.

The strategy used to scale a resource will often dictate the strategy used to ensure that a
resource is highly available. Resources that are scaled up are often hosted on a failover
cluster. Resources that are scaled out using load balancing often require a mechanism to
detect when a node is no longer capable of processing a client’s request. Resources that are
scaled out using partitioning often require that every node that hosts a portion of the
resource reside in a failover cluster.

| also introduce techniques for programming against a highly available resource. Finally |

explain the importance of performance in ensuring that your Web service scales in an
effective and manageable way.

Chapter 13: The Future of Web Services

Overview

The technologies used to build Web services and the ways developers leverage these
technologies are in their infancy. At the time of this writing, standards bodies are well
underway drafting the next version for a number of existing specifications such as SOAP and
UDDI. In addition, companies are developing new and creative uses for Web services.

In this chapter, | first examine a set of Web services currently in development within
Microsoft that is receiving a considerable amount of attention— Microsoft .NET My Services.
Microsoft .NET My Services exposes a humber of Web services that allow users to control
their personal data. Among these are a set of userfocused Web services that allows users
to store their personal information securely in remote locations and then access it from any
device in any location and even allows others to access it (but strictly on terms the user
defines). | explain how you can leverage .NET My Services from within your own
applications.

The existing suite of industry-standard specifications that define Web services has some
significant omissions. In many cases, developers are stifled with respect to the type of
services that they can provide their customers. In the case of .NET My Services, | point out
areas that are not covered by the current set of Web service specifications.

In an effort to fill in gaps not covered by the current set of Web service specifications,
Microsoft introduced the Global XML Web Services Architecture (GXA). At the time of this
writing, the GXA consists of five specifications that address key areas not covered by current
industry standards. Once the specifications mature, Microsoft intends to turn over the
specifications to recognised standards bodies so that they can be ratified and released as
recommendations. In this chapter, | provide a brief overview of all five specifications.

Finally | examine some of the emerging infrastructural components for developing and
deploying Web services. Specifically, | provide a brief explanation of Microsoft’s plans to
provide dynamic application topologies, the ability to host a Web service across a number of
geographically distributed servers. | also review the BizTalk Orchestration for Web Services
technical preview.
Note
The material in this chapter is based on beta software and specifications, so
changes are likely prior to final release.

Introducing .NET My Services

Consider the personal information you have stored electronically: multiple usernames and
passwords to access an array of Web sites; bookmarks stored on your home PC, which you
cannot access from the office; calendars that you must synchronize on PCs in different
locations and on your PDA; and separate contact lists held by your cell phone, PDA, and
home and office PCs. And this is merely a fraction of the information the average user must
manage. Users will soon have a solution to this problem with .NET My Services, a set of
XML Web services that gives a user control over his personal data.

.NET My Services allows a user to store personal information remotely in a secure “digital
deposit box.” The user can then permit individuals or organizations to access parts of this
information on the user’s terms. For example, a user might allow an airline access to her
schedule for a single operation so that the airline can enter flight departure and arrival times.
Not only can the user control her information, but she can also access that information at

3l

any time from any device. For example, a user might access her information using PCs at
various locations, a cell phone such as the Stinger smart phone, or even an Xbox. This is
possible because .NET My Services is like any other Web service—it communicates over
existing transport protocols using XML and it returns XML to a client, which must then
interpret and render the information in an appropriate fashion.

The beta release of .NET My Services will consist of a set of core services. Later, Microsoft
and approved third parties will develop and release additional .NET My Services services.
The initial core services are as follows:

.NET My Services service Records the services to which a user subscribes.

.NET Alerts Allows a user to manage subscriptions to alerts or notifications and
allows Web sites and Web services to send a user alerts. For example, a Web service
might send an alert to a user if a particular stock drops in price.

.NET ApplicationSettings Stores a user’s application settings. For example, an
application that accesses the service can adjust itself to the stored settings for toolbars
in order to match the user’s preferences.

.NET Calendar Stores a user’s calendar information, such as time and task
management information.

.NET Categories A list of categories that allows a user to group data documents
together. For example, a user can group contacts (from .NET Contacts) together to form
a contact list.

.NET Contacts Stores a user’s contact information, such as colleagues’ e-mail
addresses and phone numbers. For example, a user can store a colleague’s contact
details while at the office and then look up these details using his cellular phone while
out of the office.

.NET Devices Stores information about the devices a user plans to use to access
.NET My Services. For example, a user can store the display attributes of her PDA.
Incidentally, you can deliver information from services to mobile devices using the
Mobile Internet Toolkit, which allows you to write ASP.NET pages that the runtime
formats to match the display attributes and markup language that the client’s device
supports.

.NET Documents Stores a user’s documents both securely and remotely.

.NET FavoriteWebsites Stores a list of the user’s favorite Web sites.

.NET Inbox A centralized access point for users to access their e mail. For example,
a user can access her Hotmail account from a PDA while away from a PC.

.NET Lists Stores user-defined free-format lists. For example, a user can store a list
of all the countries he wants to visit on an around-the-world tour.

.NET Locations Stores the location of the actual user at a given time. For example, a
user might set her location to The Office or At Home.

.NET Presence Stores information about a user’s availability for receiving alerts. For
example, a user can set his presence status to indicate that he is currently off line and
thus cannot receive an alert.

.NET Profile Stores a user’s personal information. For example, a user can store her
name, family birthdays, and personal photographs.

.NET Wallet Stores information the user needs to make payments, as well as items
such as receipts and coupons that relate to payments. For example, the user can
securely store his credit card details so that he does not have to enter card information
each time he wants to make an online payment.

.NET My Services will offer exciting opportunities not only to users but also to businesses
and developers. Businesses will be able to offer levels of service that the Web simply cannot
deliver today. For example, with the aid of .NET My Services, an e-commerce business will
be able to interact with a new customer as if she were an existing customer. All the user has
to do is log in using .NET Passport, and the business will be able to access her personal
details, delivery information, and payment information. The business can even send alerts to

her cell phone when a new product arrives in stock or update her schedule so that she
knows when the product will be delivered.

From a developer’s perspective, .NET My Services eliminates many of the problems of
securing data, providing encrypted transport channels, and reconciling disparate data
sources. And all of this is achievable using XML Web services, so businesses are spared the
drastic learning curve associated with new technologies and the need to make any radical
changes to their development and production environments.

The following graphic shows a simplified view of the .NET My Services architecture. It shows
that a client can consume a .NET My Services service in the same way that it consumes a
regular Web service (at least at a high level), with the exception of the authentication service
that .NET Passport provides. A client can make requests to .NET My Services services
using XML using a protocol such as HTTP or Direct Internet Message Encapsulation (DIME)
as a transport mechanism. Authentication is necessary in this architecture to ensure that
only individuals or organizations that a user wants to grant access to can access that user’s
information.

Srmart
Fhone FDA Pag Aulhentication MET
Passpor
PC Sarvad
S0aP 1 .NET
i AL "| My Servicas
Intarpret and render XML

Securing .NET My Services

.NET Passport is at the heart of the .NET My Services security architecture and provides
authentication services through the use of Kerberos. The .NET Passport service
authenticates users and provides access to a .NET My Services service through the issuing
of tickets, which are in effect temporary encryption keys. The following graphic shows the
process of authenticating a user and allowing that user access to a .NET My Services
service.

D Usar clicks NET
*| Passport sign-in
link on clant LI MET Passporl
E X authanicales
redarrar and than
relurns sign-in
page
|D Usar provides
* authenlication
= — -
\. MNET PELSEPC'"
authencales
usar
User's browsser /
reCones ekt
containing tha
PUID
Usar’s browsar
redirects o
paricipalting sila,
which exiracls
ticket and profile
from redorral
query siring

Note
Kerberos is an industry-standard protocol created at the Massachusetts
Institute of Technology (MIT) that provides strong authentication over a
network. Several operating systems implement this protocol, including
Microsoft Windows 2000 and Windows XP.

As you can see, once the user clicks on a .NET Passport link, he is redirected to the .NET
Passport server. When this redirection occurs, the referring site passes an ID unique to that
site and a return URL. .NET Passport uses these to verify that the referring site is indeed the
site it claims to be. If verification is successful, .NET Passport presents the user with a log-in
screen, where the user enters a username and password. If .NET Passport can authenticate
the user’s credentials, it extracts a Passport Unique Identifier (PUID) and a Passport Profile
from a database. .NET Passport then uses these to create three encrypted .NET Passport
cookies (a ticket, a profile, and a visited-sites cookie), which it returns to the user’s browser.
.NET Passport then redirects the user to the referring Web site, where the site extracts the
ticket and profile information and sends them to a Passport Manager object. This object
decrypts the information and authenticates the user.

Under the .NET My Services model, the user no longer stores her own personal information
but instead allows Microsoft or a trusted third party to store that information on her behalf.
This paradigm shift requires the user to establish a trust relationship with the holder of her
information—the user must be confident that her information will be made available only to
appropriate parties. Authentication partially addresses this issue, but the issues of the
security of the data store and the availability of information to third parties still remain.

In terms of data-store security, Microsoft ensures that database servers are not accessible

over the Internet and that only Microsoft-certified personnel can access these databases. In
addition, Microsoft can rotate encryption algorithms to further enhance the integrity of the

data stores. Privacy of information is a different matter because it relies on the integrity or
philosophy of an organization rather than on a physical means of protection.

Microsoft states that it will not allow secondary use of data and supports this with the

following two measures:

. Microsoft will be audited by Safe Harbor, a controlling body of the European Union
(EV).

" Microsoft states that it will adhere to its own Fair Information Practices.

Working with .NET My Services

When you work with .NET My Services, you can think of it as an XML database—a database
of user information that, for example, you can execute queries against and that will return the
results of those queries as XML fragments. It is then up to you to interpret that data and
render it appropriately for your client. In reality, .NET My Services stores all data as XML
service documents, and you access this data using XML messages rather than using a
query language such as SQL.

HSDL, the .NET My Services data manipulation language, defines the following six XML

messages, which are common to all .NET My Senices services:

. gueryRequest Allows you to issue a query against a document, which will return an
XML node set.

" deleteRequest Deletes a specified node set from a specified document.

. updateRequest Allows you to define a composite message, which can consist of a
series of insert, delete, and replace requests.

. replaceRequest Replaces a specified node set with another node set.

. insertRequest Inserts XML in a document at a specified location.

. subscriptionResponse Requests a subscription to specified data; when data
changes, you receive a notification.

As you can see, each of these messages allows you to either insert data into or extract data
from a service document. You can also see that most of the messages manipulate node sets
rather than individual elements within an XML document. These node sets are demarcated

by specially designated elements that allow HSDL messages to use XPath-style node
selection. At the highest level within a document is a root element whose name matches that
of the corresponding service. This element is known as the root, and HSDL labels this as a
blue element. HSDL also labels the children of this element (that is, top-level elements) as
blue elements.

The following example shows sample XML with the blue elements shown in bold:

<myAddr ess changeNunber="..." instanceld="...">
<address changeNunber="..." id="...">

<cat ref="..."></cat>
<of fi ci al AddressLine xm :lang="..."></official AddressLi ne>
<i nt ernal Addr essLi ne xm : [ang="..."></internal AddressLi ne>
<primaryCity xm:lang="..."></primaryCity>
<secondaryCity xm :lang="..."></secondaryCity>
<subdi vi si on xml : | ang="..."></subdi vi si on>

<post al Code></ post al Code>

<countryOrRegi on xml : | ang="..."></countryOr Regi on>

<l-- Further Elenments -->

</ addr ess>

<webSite changeNunber="..." id="...">
<cat ref="..." id="..."></cat>

<url ></url >
<I-- Further Elements -->

</ webSite>

<! -- Further Blue Elenents -->

</ nyAddr ess>

The listing shows that the following elements are blue:
= <myAddress/>

" <address/>

" <webSite/>

These elements demarcate the node sets, which you can manipulate using the previously
described HSDL messages. Each blue element contains one or more red elements or
attributes, which the previous example shows as underlined. You can use the red elements
to assist in the selection of a blue element when you use HSDL messages. The remaining
elements—those that are neither red nor blue—you cannot address directly, but you can
include them within a reference to a red item.

You can use both red and blue items in XPath predicates within HDSL messages, but be
careful that you understand how the following commands work:

" insertRequest Inserts a blue item into a document or a red item into a selected blue
item

" deleteRequest Deletes a blue item from a document or a red item from within a blue
item

. replaceRequest Replaces a blue item or a red item
= queryRequest Returns a blue item (or items) or a set of instructions that tell you
whether cached information is valid

A Sample .NET My Services Request

As a developer, you are probably eager to see how HSDL works in practice. Although you
cannot write real code against .NET My Services today, we can still walk through a short
example of using HSDL against a .NET My Services service. This example creates a SOAP
message that inserts an entry containing a user’'s name and e-mail address into the .NET
Profile service document.

Here is the complete example, with the HSDL operation shown in bold:

<?xm version="1.0"?>

<s: Envel ope

s:encodi ngStyl e="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns:s="http://schemas. xn soap. or g/ soap/ envel ope/ ">

<s: Header >

<x:path xm ns: x="http://schemas. xm soap.org/rp/">
<x:action>
http://schemas. nmi crosoft. conm hs/ 2001/ 10/ cor e#r equest
</ x:action>
<x:rev><x:via /></x:rev>
<x:to>http://speci es8472</x:to>
<x:id>35b4474a- a7d9- 11d5-bf Oe- 00b0dOccc121</ x: i d>

</ x: pat h>

<ss:licenses

xm ns:ss="http://schemas. xm soap. org/ soap/ security/2000-12">
<h:identity nustUnderstand="1">

<h: ker ber os>1</ h: ker ber os>

</h:identity>

</ss:licenses>

<h: request

xm ns: h="http://schemas. m crosoft.com hs/ 2001/ 10/ core"

service="nyProfile"

document =" content "

nmet hod="i nsert"

genResponse="al ways" >
<h: key instance="0" cluster="0" puid="3066" />

</ h: request >

</ s: Header >

<s: Body>
<hs: i nsert Request
xm ns: hs="http://schemas. m crosoft.com hs/ 2001/ 10/ core"
xm ns: me"http://schemas. m crosoft.com hs/ 2001/ 10/ nyProfile"
hs:select="/mnyProfile">
<m nane
xm ns: me"http://schemas. m crosoft.conf hs/ 2001/ 10/ nmyProfile">
<m gi venNane xm : | ang="en-us">John</ m gi venName>
<m sur Narme xml : | ang="en- us">Chen</ m sur Nane>
</ m name>

<m enmi | Addr ess
xm ns: mE"http://schemas. m crosoft. com hs/ 2001/ 10/ nyProfil e">
<m e-mai | >j ohn@ abri kam conx/ m e-mai | >
<m name xnl :lang="en-us">John Chen</m nane>
</ m e- mai | Addr ess>
</ hs:insert Request >
</ s: Body>

</ s: Envel ope>

As you can see, most of the XML isn’'t the HSDL command, but the remainder of the SOAP
envelope. When Microsoft makes .NET My Services publicly available, you can use the
.NET My Services SDK to generate the SOAP message for you, so | will not provide a
detailed explanation of the entire SOAP envelope here. However, you should note a few
points.

. The path element contains information about the forward path of the SOAP message;
it can optionally contain additional information that specifies the return path. (I discuss
the future of Web services routing later, in the section titled “WS-Routing.”)

= The child elements of the licenses element are shown without any content in the
previous example, but in the future you will be able to define information pertaining to
authentication using Kerberos and .NET Passport. (I discuss this later, in the section
titled “WS-Security and WS-License.”)

" The request element does contain information that relates to the HSDL command the
SOAP message issues. The service attribute defines the target service, which in this
instance is myProfile. The document attribute can have two possible values: content if
the request is for data-related purposes, and admin if the request is for administrative
purposes. Finally, the method attribute defines the type of request the client wants to
have performed on his behalf, which in this case is an insert.

As shown in the preceding listing, the SOAP body element contains the actual HSDL
message. As you can see, the message itself is quite simple. The name and emailAddress
elements are blue elements, which (as | mentioned previously) means you can insert,
modify, or delete the node sets that these elements demarcate. In the preceding example,
you insert data into the name node set and the emailAddress node set. You can do this
because these node sets are blue elements, but what you cannot do is directly address one
of their children. To insert only a user’s e-mail address, you must insert an emailAddress
node set that contains an e-mail element rather than insert just an email element.

The Global XML Web Services Architecture (GXA)

Today, Web services are built on a set of baseline specifications, which include SOAP, Web
Services Description Language (WSDL), and Universal Description, Discovery, and
Integration (UDDI). Together, these specifications allow you to write Web services, which are
not constrained by programming languages or platforms. The true value of Web services lies
in their ability to operate in these heterogeneous environments, but these environments also
pose challenges that Web services do not currently address.

" Security Web services must operate within the context of an end- to-end security
architecture that allows for authentication and authorization across a heterogeneous,
distributed environment.

. Routable Messages In some cases, a message might need to be routed through
multiple intermediaries across multiple transports. In these cases, you need the ability to
define the route a message must take to reach its intended recipient.

" Referral Service Often the route to an intended recipient must be dynamically
configured. For example, many computers, especially those owned by corporations, are
located behind a network address translation (NAT) server. A computer located behind
a NAT server can open a connection to another server. However, the first computer is
not addressable by computers located on the opposite side of the NAT server. In this
case, the message needs to be dynamically routed to its intended recipient.

= Browsable Discovery Sometimes it is necessary to advertise your Web service so
that it can be discovered using a browse paradigm. For example, a developer might
want to browse a peer’s server to determine which Web services are exposed.

Unfortunately, the current Web services architecture does not provide specifications that
define how these types of operations can occur. This means that an organization
implementing Web services today will choose either to ignore these issues or to develop its
own proprietary solutions to these problems.

For example, an organization that wants to ensure message integrity might implement a
technigue based on a proprietary security mechanism. Anyone who interacts with this
organization must adhere to this technique. Obviously, this approach requires that the
consumer and the producer of the Web service agree on how this solution is implemented.
However, the Web service consumer might discover that another Web service producer she
deals with implements a different solution, and thus the consumer must modify her
applications to interact using another proprietary solution. As you can see, this breaks the
fundamental ethos of Web services—that of interoperability.

To respond to the need for universal specifications that ensure interoperability, routable
messages, referral service, and browsable discovery support, Microsoft and its partners are
defining a set of new specifications. Once these specifications mature, Microsoft will propose
them to the appropriate entities for consideration as universal standards, in much the same
way that it did with SOAP. Together, these specifications will form the GXA.

So far, the GXA consists of the following five specifications:
. Web Services Inspection Language (WS-Inspection)
" Web Services Security Language (WS-Security)

" Web Services License Language (WS-License)

" Web Services Routing Protocol (WS-Routing)

. Web Services Referral Protocol (WS-Referral)

These specifications leverage the extensible nature of SOAP to provide SOAP modules that
build on the baseline specifications of today’s Web services. The modular nature of the
architecture allows you to select which of the modules you want to use. For example, if you
have an application for which security is of no concern, you will not need to use the modules
pertaining to security (WS-Security and WS-License). In addition, each module is expressed
in the same terms regardless of whether it is used individually or with other modules. Finally,
modules are independent of the platforms or programming languages at the message
endpoints, thus allowing Web services to use the architecture in heterogeneous
environments.

WS-Inspection

Recall that in Chapter 91 explained two methods of locating a Web service, UDDI and
DISCO. UDDI provides a centralized directory that can be searched to locate published Web
services. UDDI does provide the ability to browse for the Web services exposed by a
particular business entity. However, it does not provide a means of discovering the Web
services exposed by a particular server.

Today this role is filled by DISCO. DISCO provides a browse paradigm similar to hypertext
links in HTML documents. However, DISCO has its drawbacks. DISCO is not an industry

standard, is not extensible, and is currently supported only by the .NET platform.

WS-Inspection is intended to offer an industry-standard mechanism for discovering Web
services via a browse paradigm while overcoming the known issues with DISCO. Similar to
DISCO, a WS-Inspection document can contain a list of pointers to WSDL documents as
well as to other WS-Inspection documents. Unlike DISCO, WS-Inspection is extensible and
allows you to reference any number of resources, including UDDI directory entries.

WS-Inspection Document Syntax

The grammar of a WS-Inspection document is quite simple, as the following example shows:

<wsi | ;i nspection>
<wsi |l :abstract xm:lang=""? ... [>*
<wsil:service> *
<wsi | :abstract xm:lang=""? ... /> *
<wsi | :name xm :lang=""? ... /> *
<wsi | : description referencedNanespace="uri" |ocation="uri"?> *
<wsi | : abstract xm:lang=""? ... [> *

<-- extensibility element --> ?
</wsil:description>
</wsil:service>

<wsi | :1ink referencedNanespace="uri" |ocation="uri"?/> *
<wsi | ; abstract xm:lang=""? ... /> *
<-- extensibility elenent --> ?
</wsil:link>
</wsil:inspection>

Each WS-Inspection document has an inspection root element. This element must contain at
least one service element or link element. The service element must have one or more
description elements, which act as pointers to other service description documents. The
description element’s referencedNamespace attribute identifies the namespace that the
referenced document belongs to, and the location attribute references the actual service
description document.

For example, the following XML fragment shows a reference to a WDSL document
accessible via HTTP:

<descri ption referencedNanmespace=http://schemas. xm soap. or g/ wsdl /
| ocati on=http://exanpl e.conl weat herreport.wsdl/>

The service element has two other child elements: abstract and name. The abstract element

allows you to add a text description within the element. This description is intended for
human eyes rather than for consumption by an application. Likewise, the name element

allows you to associate a human-readable name with a service.

In contrast to the service element, the link element references another aggregation of
service documents, such as another WS-Inspection document. Similar to the service

element’s attributes, the link element’s referencedNamespace points to the namespace of
the linked aggregation, and you can use the link element’s location attribute to provide a link

to the actual linked aggregation source.

For example, the following XML links a WS-Inspection document to two other WS-Inspection
documents, which other directories on a Web server contain:

<i nspection xm ns=
"http://schemas. xm soap. or g/ ws/ 2001/ 10/ i nspecti on/">
<li nk referencedNanmespace=

"http://schemas. xml soap. or g/ ws/ 2001/ 10/ i nspecti on/ "

| ocation="http://exanpl e.com weat her/inspection.wsil"/>

<li nk referencedNanmespace=

"http://schemas. xm soap. org/ ws/ 2001/ 10/ i nspecti on/"

| ocation="http://exanple.com events/inspection.wsil"/>
</inspection>

Notice that the actual WS-Inspection document and the two links all reference the schema
because they all belong to the same namespace. When a user accesses this document, she
can obtain the aggregated list of services that the two linked documents advertise. As you
can see, this type of chaining allows multiple common entry points to a site to advertise the
services on offer throughout the site without having to repeat lists of references.

Publishing WS-Inspection Documents

To allow users to look up the services referenced by a WS-Inspection document, you must
place the document where users can locate and access it. WS- Inspection provides two
methods for doing this. The first, Fixed Name, requires you to place WS-Inspection
documents at the common entry points to your Web site or application. You should save the
WS-Inspection document with the name inspection.wsil so that users know to request a
document with a standard name. If you provide services from more than one location on

your server, you must provide a separate WS-Inspection document at each of these
locations. Of course, you can chain these documents—as shown previously—to avoid
duplicating service inform ation.

The second method, Linked, allows you to advertise services through other types of content.
For example, you can link to multiple WS-Inspection documents through an ordinary HTML
Web page. To do this, you simply reference the WS-Inspection documents from the content
attribute of the HTML META tag, as shown here:

<HTM_>
<HEAD>
<META nane="servi cel nspecti on"
content="http://exanpl e.com weat her/i nspection.wsil">
<META nane="servi cel nspecti on”
content="http://exanpl e. com events/i nspection.wsil">
</ HEAD>
<BODY>
<l-- Other HTML tags -->
</ BODY>

3l

</ HTML>

As you can see, the HTML links to the two WS-Inspection documents that | previously
defined. Note that when you link to documents in HTML, you must link only to WS-Inspection
documents and not to other HTML documents.

WS-Security and WSLicense

One challenge that developers of Web services face is securing messages to and from Web
services. In Chapter 10, we looked at how developers can address those issues today.
Specifically, you learned about ways to provide authentication, authorization, data integrity,
and nonrepudiation for data exchanged between a client and a Web service. The solutions |
examined relied on technologies outside of the actual SOAP messages themselves, such as
the following:

. IIS authentication mechanisms such as Basic authentication and Digest authentication
. SSL/TLS or IPSpec for securing transport channels

" Cryptography algorithms for encrypting and signing data

The problem with leveraging these technologies is that they are not integrated with SOAP.
For example, the 1IS authentication mechanisms are tightly coupled to the HTTP protocol
and provide no benefit if the message is sent over another transport protocol. SSL/TLS and
IPSec are connection-oriented protocols and do not provide an end-to-end solution if the
message needs to be routed through multiple intermediaries. If the message is signed or
encrypted using a standard cryptography algorithm, there is no standard way of presenting
the recipient with the information to validate the signature or decrypt the message. What is
needed is a solution that is SOAP-oriented, one that is standards based and transport-
protocol agnostic.

The GXA defines WS-Security and WS-License, which together define a standard way to
build secure solutions for SOAP messages. These specifications provide support for the
following:

. Multiple security authentication credentials

. Multiple trust domains

. Multiple encryption technologies

Because the specifications do not dictate a particular implementation, they allow you to
securely exchange SOAP messages in a platform-independent and technology-independent
way. As long as a client application can build and understand SOAP messages and has
access to appropriate libraries—for example, a Kerberos library —it can interact securely with
a Web service.

Specifically, the modules provide support for multiple security authentication credentials,
multiple trust domains, and multiple encryption technologies through the following three main
mechanisms:

. Credential passing

. Message integrity

. Message confidentiality

The modular nature of the architecture allows you to use these mechanisms together for an
integrated security solution or to use them individually to address specific scenarios. For
example, if you run a weather report Web service in which authentication is the only
requirement, you can simply use credential passing as a means of authenticating users. If
you run a Web service that supplies sensitive sales data to remote offices, requires you to
authenticate and authorize users, and requires you to ensure the integrity and privacy of the

data exchanged between the client and the server, your security solution will require using
all three security mechanisms.

Let's explore each of these mechanisms in more detail.
Credential Passing

When two parties want to communicate securely or one party wants to authenticate the
identity of another party, they typically exchange security credentials. The WS-Security
specification allows parties to exchange a wide variety of credentials regardless of the
underlying transport protocol or delivery mechanism. It does this by inserting an additional
header into a SOAP message known as the credentials header. The credentials header
contains credential and license information that parties can use to authenticate each other.

In terms of WS-Security, credentials refer to licenses and supporting information together.
The specification is independent of any specific license or credential format, but it does
provide explicit support for X.509 certificates and Kerberos tickets. The WS-License
specification defines the XML elements that describe thes e licenses. Thus, to pass
credentials, you use WS-Security and WS- License together. Specifically, WS-License

defines the following four subtypes of the WS-Security credentials type:
. abstractLicense The abstract class for all licenses, from which all WS-License
licenses derive. You can extend the specification by creating your own subtype of this

type.
. binaryLicense Represents an instance of a license that is binary encoded. The two
possible values for this type are X.509 certificate and Kerberos ticket.

. abstractCredential The abstract class for all credentials, from which all WS-License
credentials derive. You can extend the specification by creating your own subtype of
this type.

" binaryCredentials U sed to pass a security credential, which is not a license but is
binary encoded. The specification does not define specific values for this type; instead,
it accepts user-defined values.

The following example shows a SOAP message that contains an X.509 certificate. It also
shows the relationship between the W S-Security and WS-License specifications.
<?xm version="1.0" encodi ng="utf-8"?>

<S: Envel ope xm ns: S=http://schemas. xm soap. or g/ soap/ envel ope/
xm ns: xsd=htt p: //ww. w3. or g/ 2001/ XM_Scherma
xm ns: xsi =ht t p: / / www. w3. or g/ 2001/ XM_Schema- i nst ance>
<S: Header >
<m path xm ns: =" http://schemas. xm soap. org/rp">
<m action>http://tickers-r-us.org/getQote</maction>
<m to>soap://tickers-r-us.org/stocks</mto>
<m fronmpmai | to: j ohnsm t h@ sps-r-us. conck/ mfrone
<m i d>uui d: 84b9f 5d0- 33f b-4a81- b02b- 5b760641c1d6</ mi d>
</ m pat h>

<wssec: credentials xsi:type="wslic: CREDENTI ALS"
xm ns: wssec=http://schemas. xm soap. or g/ ws/ 2001/ 10/ security
xm ns:wslic="http://schemas. xnm soap. or g/ ws/ 2001/ 10/1i cense" >

<wsl i c: bi naryLi cense wslic:val ueType="wslic: x509v3"
xsi:type="xsd: base64Bi nary" >
M | EZz CCA9CgAW BAgl QEnt JZcOr gr Kh5i . . . RnSNBe8DQve
gqD6a3gUACYyZ6XVe3u
</wslic: binaryLi cense>
</wssec: credenti al s>
</ S: Header >

<l -- Body here-->

</ Envel ope>

As you see, the message contains a credentials element (as defined by the WS-Security
specification). This element has a child element of binaryLicense (as defined by the WS-
License specification), which contains the X.509 certificate. If you want to pass an alternative
form of license or alternative credentials, you can replace binaryLicense with the appropriate
option from those previously listed.

Message Integrity

In Chapter 10, you learned that you must have control of both the client and the Web service
in order to ensure the integrity of data, and that no current SOAP standard provides for
integrity. This situation will change because the integrity mechanism of the WS-Security
specification provides privacy through the use of signatures that are compliant with the XML-
Signature specification. You insert these signatures into an integrity SOAP header.

Signatures provide two benefits: integrity (the message has not been altered in transit) and
nonrepudiation (you must have sent it because you signed it). The specification allows you
to include one signature for an entire message or multiple signatures, each relating to a
different portion of the message. For example, this is particularly useful when a message is
forwarded from one department to another and each department adds to the message; the
signatures can provide a history of integrity for the document.

Another important issue that the specification addresses is that of SOAP headers, which are
volatile and often in flux. For example, the WS-Routing specification (more on this a little
later) allows SOAP headers to change legitimately; thus, a message receiver might not be
able to verify a signature based on the entire SOAP envelope, including these headers, even
though the message body has not changed. The use of multiple signatures can negate these
effects, but the specification recommends the use of a Routing Signature transform. A
Routing Signature transform bases its signature digest computation on the SOAP envelope
but excludes the WS-Routing headers, which are liable to change legitimately. A message
recipient can thus verify the signature even though some of the WS-Routing SOAP headers
might have changed. In addition to the Routing Signature transform, the specification
supports all the algorithms and transforms defined by the XML-Signature specification.

The following example shows a SOAP message that contains a single XML-Signature. The
integrity node set, which contains all the signature information, is shown in bold.

<?xm version="1.0" encodi ng="utf-8"?>

<S: Envel ope xm ns: S=http://schemas. xm soap. or g/ soap/ envel ope/

xm ns: xsd=http://ww. w3. or g/ 2001/ XM_Schema
xm ns: xsi =http://ww. w3. or g/ 2001/ XM_Schema- i nst ance>

<S: Header >
<m path xm ns: n="http://schemas. xnm soap. org/rp">

<l-- Standard path headers here -->
</ m pat h>

<wssec: credentials

xm ns: wssec="http://schems. xnl soap. org/ ws/ 2001/ 10/ security">
<wsl i c: bi narylLi cense
xm ns: wslic=http://schemas. xm soap. or g/ ws/ 2001/ 10/ 1i censes
wsli c:val ueType="wslic: x509v3" xsi:type="xsd: base64Bi nary"
i d="X509Li cense" >

<l-- The very long encrypted certificate here -->

</wslic: binaryLi cense>
</ wssec: credential s>

<wssec:integrity
xm ns:wssec="http://schemas. xm soap. or g/ ws/ 2001/ 10/ security">
<ds: Signature xm ns:ds="http://ww.w3. org/ 2000/ 09/ xm dsi g#" >
<ds: Si gnedI nf o>
<ds: Canoni cal i zat i onMet hod
Al gorithm="http://ww. w3. org/Signature/Drafts/xmnl -exc-cl4n"/>
<ds: Si gnat ur eMet hod
Al gorithm="http://ww.w3. org/ 2000/ 09/ xm dsi g#rsa- shal"/ >
<ds: Ref erence>
<ds: Transf or ns>
<ds: Transform Al gorit hnme
"http://schemas. xm soap. or g/ 2001/ 10/ security
#Rout i ngSi gnat ureTr ansforni'/ >
<ds: Transform Al gorit hme
"http://ww. w3. org/ TR/ 2001/ REC-xm -c14n-20010315"/ >
</ ds: Transf or ms>
<ds: Di gest Met hod
Al gorithm"http://ww. w3. org/ 2000/ 09/ xml dsi g#shal"/ >
<ds: Di gest Val ue>

EULddyt SolzHgUl j A3l HABWSV 7 A=
</ ds: Di gest Val ue>
</ ds: Ref erence>
</ ds: Si gnedl nf o>
<ds: Si ghat ur eVal ue>

BL8j df ToEb1l / vXcMZNNj POVt 8Wjc72Ht 7GEHE pJj 3n33W NEYpU5ZYv/ 5aXeU5eFSIP
3UM

0suDTORH8s8PsnS218ao0yRvA3j JYnx EKPKVTDAXq7LK3zZ28i WhOhN98nwSnZ4L4Hge3
40

gW3j OhLZRkx6czpJux! cDl hi bbmy=
</ ds: Si gnat ur eVal ue>
<ds: Keyl nf 0>
<wssec: | icenselLocati on="#X509Li cense"/>
</ ds: Keyl nf 0>
</ ds: Si gnat ur e>
</wssec:integrity>

</ S: Header >

<! -- Body here-->

</ S: Envel ope>

The integrity element can contain multiple Signature elements, but in this instance it contains
just one. The Signature element has three children. The first is the Signedinfo element,
which you use to pass information about the encryption algorithms used to create the
signature and the digest on which it is based, as well as the URI of any transforms you have
applied. The second element is the SignatureValue element, which contains the actual XML
signature. The final child element is the optional KeyInfo element, which references a license
with which the user can determine the trust level of the signed data. In this example, the
license is an X.509 certificate, which is also included within the SOAP header.

Message Confidentiality

You have seen how WS-Security can help you ensure the integrity of data, but in some
instances simply checking whether a malicious party has modified data in transit is not
enough—you need to ensure that the data remains confidential so that even if someone
gains access to it, it is of no use to them. For example, when users pass credit card details
to a Web service, it is imperative that no one be able to see the credit card numbers while
the data is in transit. In these instances, you must encrypt the data—that is, the SOAP
envelope’s actual payload. The WS-Security confidentiality mechanism provides a way to do
this using XML Encryption.

In terms of algorithms, the specification has the same requirements as the XML Encryption
specification and, unlike the integrity mechanism, it does not recommend any additional
algorithms. To send a message whose body or a portion of whose body is encrypted, you
encode the SOAP message based on the XML Encryption specification. However, if you

want to send encrypted attachments, you do not use the functionality XML Encryption offers
but instead use the WS-Security confidentiality SOAP header. This header acts as a

container for references to encrypted parts and attachments, each of which you reference
using an EncryptedData element.

The following example shows the use of the confidentiality header to reference an encrypted
attachment:

<?xm version="1.0" encodi ng="utf-8"?>
<S: Envel ope xm ns: S="http://schenmas. xnm soap. or g/ soap/ envel ope/ "
xm ns: " xsd=http://ww. w3. org/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<S: Header >
<m path xm ns: m="http://schemas. xm soap. org/ rp">
<m action>http://tickers-r-us.org/getQote</maction>
<mto>soap://tickers-r-us.org/stocks</mto>
<m fronpmailto:johnsm th@sps-r-us.cong/mfrone
<m i d>uui d: 84b9f 5d0- 33f b- 4a81- b02b-5b760641c1d6</ m i d>
</ m pat h>
<wssec:confidentiality
xm ns: wssec="http://schems. xn soap. org/ ws/ 2001/ 12/ security">

<enc: Encrypt edDat a
xm ns:enc=""http://ww.w3. org/ 2001/ 04/ xm enc#" >

<enc: Encrypti onMet hod
Al gorithme"http://ww. w3. org/ 2001/ 04/ xm enc#3des-chc"/ >
<ds: Keyl nfo xm ns:ds="http://ww. w3. org/ 2000/ 09/ xm dsi g#" >
<enc: Encrypt edKey>
<enc: Encrypti onMet hod
Al gorithm="http://ww. w3.0org/ 2001/ 04/ xm enc#rsa-1_5"/>
<enc: Ci pher Dat a>
<enc: Ci pher Val ue>
AQ AAANMAAAAPAAAX2IMDBW/A. . .
1YOTwnDRoTI cOBke5j PEKszdWwW66DGXj mCj QHo=
</ enc: Ci pher Val ue>
</ enc: Ci pher Dat a>
</ enc: Encrypt edKey>
</ ds: Keyl nf 0>
<enc: Ci pher Dat a>
<enc: Ci pher Ref erence URI ="ci d: 122326"/ >
</ enc: Ci pher Dat a>
</ enc: Encr ypt edDat a>
</wssec: confidentiality>
</ S: Header >

<S: Body>
<tru: AttachedLi st xmns:tru="http://tickers-r-us.org/payl oads"/>
</ S: Body>
</ S: Envel ope>

WS-Routing

Developers currently face the challenge of having to figure out how to configure routing of
messages that must pass through intermediaries before they reach their final destinations.
Even though SOAP allows you to specify multiple intermediaries that a message must pass
through en route to its final destination, it does not provide a mechanism for specifying the
order in which the message passes through those intermediaries.

WS-Routing provides a solution to this problem by allowing you to specify message routes—
that is, it allows you to specify the order that a message travels through intermediaries on
the way to its final recipient. WS-Routing also allows you to define return, or reverse, paths
for messages so that you can create applications that use various messaging paradigms,
such as one-way messaging, two-way messaging, and long-running dialogs. As with the
other components of the GXA, WS-Routing is independent of underlying protocols—it can

operate over a wide array of transport protocols, including TCP, UDP, DIME, SMTP, HTTP,
and TLS.

When you use WS-Routing, a path SOAP header contains the routing information for the

message. This header contains child elements that specify the message path. For example,
the following SOAP message demonstrates the use of the path header:

<S: Envel ope xml ns: S="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >
<S: Header >
<w: path xm ns: w="http://schemas. xm soap.org/rp/">
<w: action>http://ww. mi crosoft.com weat her</w: acti on>
<w: t o>soap:// D. com sone/ desti nati on</ w. t 0>
<w. fwd>
<w: vi a>soap:// B. conx/ w. vi a>
<w: vi a>soap: // C. conk/ w. vi a>
</ w. fwd>
<w: f rompsoap:// A coml sone/ ori gi n</ w. fromp
<w: i d>uui d: 82e9a994- d345-acel- b2ba- 09a2c5d466</ w. i d>
</ w. pat h>
</ S: Header >
<S: Body>

<!-- Message body here -->

</ S: Body>

</ S: Envel ope>

The code provides a message path that originates from a sender (A) who sends to an
intermediary (B), who forwards the message to C, who forwards the message to D, the
message recipient. The code references these four parties through child elements of the
path header, namely these:

. from The message sender (A)

. fwd The intermediaries (B and C), each of which is declared in a via element

= to The message recipient (D)

In addition to these elements, the path header contains an action element and an id element.

The action element contains a URI identifying the action the message points toward—that is,
its intent. The id element contains an ID for the message. When you specify this ID, be sure

it is unique—for example, by using a hash of the message’s content.

WS-Routing also allows you to specify a reverse path for a message. This can be useful in a
number of situations, such as peer-to-peer messaging or returning error messages. To set a
reverse path, you use the path header’s child element, rev. Note that only the message
sender can insert a rev element into a message; intermediaries cannot. If you do not
stipulate a reverse path, one will be built dynamically as the message moves along the
forward path. However, you can specify a reverse path if you want, by using via child
elements in the same way that | did for the forward path in the previous example.

When you define reverse paths, you might want to associate one message with another. For
example, in a peer-to-peer message exchange, it is important to know which message
response relates to which original message. Likewise, it is important to identify which
message an error message relates to. WS-Routing allows you to perform this form of
correlation using the relatesTo element. This element simply takes a value, which is the ID of
the message to which it must correlate.

The following example shows a simple SOAP message that uses the rev element and the
relatesTo element:

<S: Envel ope xm ns: S="http://schemas. xnm soap. or g/ soap/ envel ope/ " >
<S: Header >
<w: path xml ns: w="http://schemas. xnml soap. org/rp/">
<w: action>http://ww. nm crosoft.com weat her </ w: acti on>
<w. t o>soap:// D. conf sone/ desti nati on</w. t o>
<w: fwd>
<w. vi a>soap: // B. conk/ w. vi a>
<w vi a>mai | t o: C@pandl . conx/ w. vi a>
</ w: fwd>
<W. rev>
<w: vi a/ >
</w rev>
<w: f rompsoap:// A coml sone/ ori gi n</ w. fromp
<w: i d>uui d: 82e9a994- d345-acel- b2ba- 09a2c5d466</ w. i d>
<w. rel at esTo>
uui d: dd089c- c569- 987a- bc23-6532c24da2
</w: rel at esTo>
</ w. pat h>

</ S: Header >

<S: Body>
<l -- Message body here -->
</ S: Body>

</ S: Envel ope>

The example highlights two further points of interest. First, it specifies the reverse path as an
empty via element. This indicates that the underlying transport protocol handles the reverse
path. For example, TCP can handle the reverse path, but UDP cannot because it does not
operate on a request- response model. The second point of interest is that intermediary B
acts as a transport protocol bridge because the example references C through the mailto
scheme.

WS-Referral

As you have seen, WS-Routing allows you to stipulate both forward and backward message
routes. What it does not do is dynamically alter these routes— more specifically, it does not
allow one WS-Routing node (a SOAP router) to dynamically insert, delete, or query routing
information in another SOAP router. For example, A might want to pass a message to B, but
if B now requires the message to pass through an additional intermediary, C, WS-Routing is
not appropriate because it does not provide a mechanism for B to inform A of this change of
policy. Fortunately, WS-Referral does provide a mechanism to allow B to pass a message to
A that indicates that all future messages must pass through C.

Specifically, WS-Referral provides the following four mechanisms that allow you to insert,

delete, and query routing entries in a SOAP router:

= WS-Referral statement Describes referral information (such as that just described)

. WS-Referral query message exchange Allows a SOAP router to request referral
statements from another SOAP router

» WS-Referral registration message exchange Allows a SOAP router to request that
another SOAP router explicitly accept or reject a referral statement

. WS-Referral header Allows a SOAP router to send referral statements to another
SOAP router without using WS-Referral query message exchange or WS-Referral
registration message exchange

As this list shows, all operations involving WS-Referral revolve around WS-Referral
statements.

The following example shows a statement that asks A to route all messages through C if the
referral takes less than 21,600,000 milliseconds (6 hours):
<r:ref xmns:r="http://schemas. xn soap. org/ ws/ 2001/ 10/ referral ">
<r:for>
<r:exact>soap:// A com weat her</r: exact >
</r:for>
<r:if>
<r:ttl>21600000</r:ttl>

</r:if>

<r:go>
<r:via>soap://C.conx/r:via>
</r:go>
<r:refld>uui d: 82e9a994- d345- acel- b2ba- 09a2c5d466</r:refl d>
<r:desc>
<r:ref Addr >
http://B.com referral Docs/ 09a2c5d466. xn
</r:refAddr>
</r:desc>
</r:ref>

The main part of the WS-Referral statement that the example shows is the for-if-go
construct. The for element contains a list of targets, which the statement is intended for. You

list each potential recipient using either the exact element (as shown in the example) or the
prefix element, which matches any URI that starts with the value defined within the element.
The if element places a condition on the statement. If the if condition returns true, the
contents of the go element are acted on. In this instance, the go element provides the
redirect URI.

In addition to the for-if-go construct, the example shows the refld element, which allows the

SOAP router to uniquely identify the statement, and the desc element. The desc element
allows you to provide a description of the statement, which in this case is a URI that points to

the physical location of a document containing the statement. The desc element is optional.
WS-Referral Query Message Exchange

The WS-Referral query message exchange provides a mechanism by which one SOAP
router can request WS-Referral statements from another SOAP router. For example, a
SOAP router might want to obtain an update for a WS-Referral statement that has exceeded
its time to live. To send a query message exchange, you simply construct a SOAP message

that contains a query element within its body. The query element contains a list of intended
recipients of the statement.

The following example shows a query in which A requests a WS-Referral statement from B.

B responds with a WS-Referral response, which is a simple SOAP message that contains a
list of WS-Referral statements within its body.

<S: Envel ope xml ns: S="htt p://ww. w3. or g/ 2001/ 09/ soap- envel ope" >
<S: Header >
<rp:path xm ns:rp="http://schemas. xm soap. org/rp/">
<rp:action>
http://schemas. xm soap. or g/ ws/ 2001/ 10/ r ef err al #query
</rp:action>
<rp:to>soap://B.conx/rp:to>
<rp:rev>
<rp:vial>
</rp:rev>
<rp:id>uui d: 82e9a994-d345- acel- b2ba- 09a2c5d466</rp: i d>
</rp: pat h>

371

</ S: Header >

<S: Body>
<r:query xmns:r="http://schemas. xm soap. org/ ws/ 2001/ 10/ referral ">
<r:for>
<r:exact >soap:// A. conx/r:exact >
</r:for>
</r:query>
</ S: Body>
</ S: Envel ope>

WS-Referral Registration Message Exchange

WS-Referral registration message exchange is a mechanism that allows a SOAP router to
explicitly request that another SOAP router accepts or rejects a WS- Referral statement. For
example, B might want to route all requests to itself to SOAP router C, perhaps because B
wants to reduce the load on itself. B can send A a WS-Referral registration message that
asks A to reroute all messages to C. A can then choose to accept or reject the request and
send a WS-Referral registration response confirming its intent.

To issue a WS-Referral registration message, you must construct a SOAP message whose
body contains a register element, which contains a ref element, which in turn contains the
WS-Referral statement to accept or reject. Here is a registration message in which B sends
a request to A:

<S: Envel ope xm ns: S="http://ww. w3. or g/ 2001/ 09/ soap- envel ope" >
<S: Header >
<rp:path xm ns:rp="http://schemas. xm soap. org/rp/">
<rp:action>
http://schemas. xm soap. or g/ ws/ 2001/ 10/ r ef err al #r egi st er
</rp:action>
<rp:to>soap://A conk/rp:to>
<rp:rev>
<rp:vial>
</rp:rev>
<rp:id>uui d: 82e9a994-d345- acel- b2ba- 09a2c5d466</rp:i d>
</ rp: pat h>
</ S: Header >

<S: Body>
<r:register
xm ns:r="http://schemas. xm soap. or g/ ws/ 2001/ 10/ referral " >
<r:ref>
<l-- W5 Referral statenent here -->

</r:ref>
</r:register>
</ S: Body>
</ S: Envel ope>

WS-Referral Header

The two previous mechanisms allow a SOAP router to either request a WS- Referral
statement or issue a statement, which the receiver must accept or reject. However, in some
instances, you might simply want to forward referral statements to a SOAP router, which can
then do with them what it wants. The WS- Referral header provides a mechanism that allows
you to do this. The header is simply a SOAP header that contains a referrals element, which
contains the statements to forward.

Here is an example of a SOAP header that contains a WS-Referral header:
<S: Envel ope xml ns: S="http://ww. w3. or g/ 2001/ 09/ soap- envel ope" >
<S: Header >

<r:referrals

xm ns:r="http://schemas. xm soap. org/ ws/ 2001/ 10/ referral ">

<r:ref>

<l-- W5 Referral statenment here -->
</r:ref>
<r:ref>

<l-- W5 Referral statenment here -->
</r:ref>

</r:referral s>
</ S: Header >
</ S: Envel ope>

Dynamic Application Topologies

One of the technologies the GXA is enabling is dynamic application topologies. Even though
the Internet facilitates ubiquitous communication between the client and the server, the
locality of a Web service and its client play a factor in the overall performance. The same
problem exists today with HTML-based applications. Companies such as Akamai and
Inktomi are providing solutions by caching static Web page content on servers
geographically distributed around the world.

Content is hosted on what are termed edge servers. Edge servers are often strategically
placed inside ISP networks in effort to reduce the latency of requests made by the ISP’s
customers. Client requests for the content are then dynamically routed to an edge server
that is deemed to provide the lowest network latency for the client.

In addition to performance, another advantage of this infrastructure is that it has the potential
to offer excellent availability and scalability. If an edge server becomes unavailable or

heavily burdened with requests, the delivery service is responsible for routing the client’s
request to another server that is better capable of handling the request.

One of the efforts underway is to take these same concepts and apply them to Web
services. A variety of companies, including Microsoft, are developing infrastructures that will

allow you to host stateless Web services on edge servers.

At the time of this writing, very little information has been publicly released regarding
Microsoft’s plans to support dynamic application topologies. However, one of the goals that
have been announced is the ability to allow developers to decorate which portions of their
Web applications can be fanned out geographically. Since the application is self-describing,
the supporting infrastructure can make intelligent decisions such as distributing certain
portions of the application to a new datacenter recently brought on line.

One of the issues with creating an infrastructure to support dynamic application topologies is
abstracting the physical location of a requested resource. Resources such as Web services
are often identified by a URL. The URL contains either an IP address or a domain name. An
IP address is very tightly coupled with the physical location of the resource. The default
behavior of DNS is to associate a particular domain name with a particular IP address,
making it tightly coupled to the resource as well.

Services such as Akamai leverage the fact that a domain name provides a level of
abstraction from the IP address. These services ensure that their own DNS servers handle
name resolution to a particular domain. This allows the service’s DNS server to apply an
algorithm for determining which IP address will be returned to the client.

There are a few potential issues with this technique. First, you cannot rely on the federated
nature of DNS. All name resolutions need to be performed by the service’s DNS
infrastructure. Second, the URL for a particular resource is often scoped to the domain name
of the service provider. If you switch service providers, you need to ensure that all your
clients reference the new URL. Finally, the resource is often an obscure series of characters
embedded in the URL, further tying you to your service provider. In the future, you will see
the evolution of a virtual topology that is more capable of abstracting the physical structure of
the Internet.

Orchestrating Web Services

Almost all non-trivial applications have a logical path of execution as well as implementation
details. The logical path of execution, or the workflow of the application, often has a clear
start point and a clear endpoint. Throughout the course of execution, work is performed on
behalf of the client. With applications written in languages such as C#, the logical path of
execution and the implementation details are intertwined within the same code base.
However, there are advantages to separating the flow of an application and its
implementation details.

By separating an application’s workflow from the implementation details, a runtime
environment is able to provide a set of services specific to an application’s workflow. One
such runtime environment is BizTalk Orchestration. Orchestration provides a framework for
defining the flow of an application and the interaction with business components that provide
the implementation details. Orchestration also provides a set of services that can be
leveraged by your application’s workflow.

One of the services provided by Orchestration is inherent support for multithreading.
Orchestration allows you to define a fork and a matching join within your workflow. For
example, suppose in order to process a purchase order, you need to get approval from three
different departments. Instead of processing those three activities serially, Orchestration
allows you to define a fork with three branches. Each of the three activities will be located on
an individual branch of the fork. The Orchestration runtime will execute the three activities in
parallel without the developer directly manipulating threads.

374

You can alter the behavior of the runtime by modifying the metadata associated with the join.
The join can be defined as an AND or an OR. An AND will instruct the runtime not to
proceed past the join until all branches complete, whereas an OR will continue past the join
as soon as one of the branches completes.

Orchestration also provides a set of services for supporting long-running transactions. An
instance of an Orchestration workflow is known as a schedule. A schedule might leverage
Web services that have a high latency between the time that a request is made and the time
the response is received. The degree of latency can adversely affect the number of
schedules that can be running at any one point in time.

To help resolve this issue, BizTalk Orchestration provides a service known as hydration. If
the server running the application becomes resource constrained, the Orchestration runtime
has the ability to dehydrate some of the running schedules and then rehydrate them when
server resources become less constrained. The runtime uses hints regarding the degree of
latency provided from the developer to determine which schedules are the best candidates
for dehydration.

Everything | have explained up to this point is available today. You can leverage
Orchestration today to coordinate the workflow within your Web services as well as the
applications that leverage your Web services by using BizTalk 2002 and the BizTalk .NET
Framework Resource Kit. So why am | covering it in a chapter dedicated to future
technologies? The reason is that BizTalk Orchestration is currently being overhauled to
provide even tighter integration with ASP.NET-hosted Web services.

Developers caught a glimpse of the direction Microsoft is heading at the 2001 Professional
Developers Conference with the release of the technical preview titled BizTalk Orchestration
for Web Services. The future version of Orchestration will provide tight integration with the
.NET framework and the ASP.NET runtime. In order to leverage BizTalk Orchestration today
within a Web service, the Web service itself must explicitly communicate with the
Orchestration runtime via well-known APIs. If a schedule invokes a Web service via a proxy
generated by WSDL.exe, it must do so via a shim .NET component or via the COM interop
layer.

In the technology preview, a workflow is able to expose itself as a Web service. In fact, the
workflow itself is compiled into a .NET assembly and is executed by the CLR. If a schedule
needs to be dehydrated, the Orchestration runtime will leverage the ASP.NET Session
Store. If a schedule needs to invoke a method exposed by a Web service, the WSDL.exe-
generated proxy can be directly called from within the schedule.

The technical preview also introduced XLANG/s, a scriptable version of XLANG. Today
schedules are created using Microsoft Visio and are persisted using an XML syntax called
XLANG. In the future, you will be able to write schedules using the XLANG/s scripting
language. In order to demonstrate the XLANG/s syntax, | will create a simple Web service
that is similar to the Hello World application generated by Visual Studio .NET.

Recall that BizTalk Orchestration allows you to separate the Web service’s workflow from

the implementation details. In order to demonstrate this, | will separate the implementation of
the Web service into three parts: one that defines the interface, one that defines the

workflow, and one that defines the implementation details. First | will cover the code that
defines the interface.

The following C# code contains the interface definition for the Web service:

usi ng System

usi ng System Web. Servi ces;

namespace Interface

{
public interface |Sinpl eWbService
{
[WebMet hod]
string Hello(string nane);
}
}

The Web service exposes one Web method, Hello. The Hello Web method accepts a string
containing the individual’s name and returns a string containing the greeting.

Next | define the workflow using XLANG/s.
nodul e Si npl eExanpl e

{

/'l 1nport the nanespace in which the Web service interface

/1 is defined.

usi ng nanmespace |nterface;

public service MyWebService

{

/'l Declare the nessages that will be used by the Wb

servi ce.

message | Si npl eWebServi ce. Hel | o<r equest > request Message;
message | Si npl eWebServi ce. Hel | o<r esponse> responseMessage;

/'l Declare the ports that will be exported or inported
/'l by the Web service.
port export | SinpleWbService sinpl eWebServi ce;

/1 Define the inplenentation of the Wb service.
body
{

/1l Listen for a request.
activate sinpleWbService >> request Message;

/1 Construct the response message.

construct responseMessage

{

responseMessage. Ret Result =

I npl ement ati on. Hel | o(request Message. nane) ;

}

/'l Send the response nessage.
si npl eWebServi ce << responseMessage;

}

As you can see, the XLANG/s syntax is rather explicit. | declare the request and response
messages and also define when the request is received and when the response is sent. One
of the benefits this model provides is that the workflow can extend beyond the scope of the
Web method. With a traditional ASP.NET Web service, the execution of the Web method
stops as soon as the response is sent to the client.

The XLANG/s document is compiled at run time. Therefore, | need to register the XLANG/s
compiler within the Web service’s web.config file.

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<system web>
<conpi | ati on defaul t Language="c#" debug="true">
<conpi l ers>
<conpi | er | anguage="xs; x|l angs" extensi on=". xs"
type="M crosoft. XLANGs. XLANGs CodePr ovi der, XLANGsConpi |l er,
Ver si on=1. 0. 702. 0, Cul ture=neutral,
Publ i cKeyToken=6464f 78e20e2eac9" />
</ conpil ers>
</ conpi | ati on>
</ system web>
</ confi guration>

The preceding web.config file registers the XLANG/s compiler with the ASP.NET runtime.
When a document whose filename ends with an .xs extension is referenced or a code
section with its language attribute set to either “xs” or “xlangs” is defined, the ASP.NET
runtime will invoke the XLANG/s compiler.

The XLANG/s syntax defined previously was saved within a file named
SimpleWebService.xs. Therefore, the following .asmx file is used to serve as the endpoint of
the Web service:

<%@ WebServi ce Cl ass="Si npl eExanpl e. \yWebSer vi ce. si npl eWebSer vi ce"
%

<%@ Assenbly Src="Si npl eWebServi ce. xs" %

Finally | define the implementation. Recall that during the construction of the response
message, | called the Hello static method exposed by the Implementation class. The
following code defines the Implementation class:

usi ng System

nanespace Si npl eExanpl e

{
public class Inplementation
{
private | nplenmentation()
{
}
static public string Hello(string nane)
{
return "Hello " + nane;
}
}
}

The preceding example took considerably more code to implement the Web service without
much perceived benefit. However, the benefit of the XLANG/s syntax would have been
realized if the implementation required a more complex workflow and would be especially
true if the Web service leveraged the services of the BizTalk Orchestration runtime, such as
its native support for parallel execution of tasks.

In conclusion, you can leverage BizTalk Orchestration within your Web services today using
BizTalk 2002 and the BizTalk .NET Framework Resource Kit. However, future versions will
offer even tighter integration with .NET and the ASP.NET runtime. XLANG/s will provide an
alternative for expressing the workflow of your Web service in addition to the Visio interface
provided today.

Summary

In this chapter, | examine some of the technologies that will help define the future of Web

services. Specifically, | covered .NET My Services, the GXA, and BizTalk Orchestration for
Web Services.

.NET My Services provides a set of Web services that allow access and management of
personal data associated with a user. You can programmatically query and manipulate the
data stored within .NET My Services using the five messages defined by HSDL:
queryRequest, deleteRequest, updateRequest, insertRequest, and subscriptionResponse.
However, you can access only your own data or the data of other users as long as those
users have given you the appropriate permissions. Identity of a user is determined by
authenticating against the Passport Kerberos domain authority.

In addition to authentication credentials, HSDL messages need to include routing information
as well. In an effort not to create a proprietary solution, Microsoft released the GXA. The
GXA is currently composed of a set of five specifications: WS-Security, WS-Licensing, WS-
Referral, WS-Routing, and WS- Inspection. Each specification is layered on top of SOAP in
a modular fashion. Therefore, any GXA specification can be used in combination with any
other GXA specification.

Microsoft released the specifications for comment by other leading technology companies as
well as customers. Once the specifications have matured, Microsoft intends to hand off the

specifications to a standards body. Once the standards body ratifies the specifications,
Microsoft has committed to ensure that its product offerings will comply with the

specifications.

Finally I examined two infrastructural components for building and deploying Web services.
The first was dynamic application topologies, which enable you to deploy your Web service
across a geographically distributed network of computers. Requests are routed by the
delivery service to the computer most capable of handling the request, which in turn
improves both the scalability and the availability of the Web service.

The second infrastructural component | explored was BizTalk Orchestration for Web
Services. Orchestration allows the developer to separate the application’s workflow from the
implementation details. Doing so enables the Orchestration runtime to provide advanced
services for the workflow such as hydration and management of long-running transactions.

Appendix: XML Schema Built-In Types

|Type

| Example

‘ Description

string Thisis a A sequence of legal XML 1
characters.
string.

normalizedString

This is a normalized string.

A sequence of legal XML 1
characters that does not contain
carriage returns, line feeds, or tabs.

token

Tokenl Token2 Token3

A tokenized string of legal XML 1
characters that does not contain
carriage returns, line feeds, or tabs.

byte

-128

A numeric value from - 128 through
127.

unsignedByte

255

A numeric value from 0 through 255.

base64Binary

6e7P

Base64-encoded binary data. Base64
encoding is described in RFC 2045.

hexBinary

B2AF

Hex-encoded binary data. Each
binary octet is encoded into its two-
character hexadecimal equivalent.
The example has a binary
representation of
1011001010101111.

integer

123456789

A numeric value meeting the
mathematical definition of an integer.
Basically, an infinitely bounded
number that can be positive or
negative.

positivelnteger

123456789

A numeric value that meets the
mathematical definition of a positive
integer. Basically, an infinitely
bounded positive number, not
including zero.

negativelnteger

- 123456789

A numeric value that meets the
mathematical definition of a negative
integer. Basically, an infinitely
bounded negative number, not

including zero.

nonNegativelnteger

123456789

A numeric value that meets the
mathematical definition of a non-
negative integer. Basically, an
infinitely bounded positive number,
including zero.

nonPositivelnteger

- 123456789

A numeric value that meets the
mathematical definition of a
nonpositive integer. Basically, an
infinitely bounded negative number,

30

Type Example Description
| | including zero.
int - 2147483648 A numeric value from
- 2147483648 through 2147483647.
unsignedint 4294967295 A numeric value from 0 through
4294967295.
long - 9223372036854775808 A numeric value from
- 9223372036854775808 through
9223372036854775807.
unsignedLong 18446744073709551615 A numeric value from 0 through
18446744073709551615.
short - 32768 A numeric value from - 32768 through
32767.
unsignedShort 65535 A numeric value from 0 through
65535.
decimal 1234.56789 A finite sequence of decimal digits
that must contain a single period as a
decimal indicator.
float - 123.456789E2, A numeric value that meets the
requirements of the IEEE single-
- 123.456789¢e2, or
precision 32-bit floating-point type.
-12345.6789 The legal special values include
positive and negative zero (0,- 0),
positive and negative infinity (INF,
- INF), and not a number (NaN).
double - 123.456789E2, A numeric value that meets the
requirements of the IEEE single-
- 123.456789¢e2, or
precision 64-bit floating-point type.
-12345.6789 The legal special values include
positive and negative zero (0, - 0),
positive and negative infinity (INF,
- INF), and not a number (NaN).
boolean 1 or true ‘ A value containing true or false.
time 01:22:15-07:00 A value containing a specific time of

day in the format HH:MM:SS.
Midnight is represented as 00:00:00.
Time is represented using 24-hour
notation. The time zone is indicated
by the number of hours after
Coordinated Universal Time.
(Mountain Standard Time in the U.S.

381

Type Example Description
is represented as
—07:00.)

date 2001-05-21 A value containing a calendar day in
the format YYYY-MM-DD.

dateTime 2001-05-21T01:22:15- A value containing a specific instance

07:00 of time in the format YYYY-MM-
DDTHH:MM:SS.

duration P3Y1M24DT11H22M10.4S A value containing a duration of time
in the format P#Y#M#DTHH#M#AS or
any subset, such as P#M#S.

gMonth --05-- A value containing a Gregorian month
in the format --MM--.

gYear 2001 A value containing a Gregorian year
in the format YYYY.

gYearMonth 2001-05 A value containing a Gregorian month
in a particular year in the format
YYYY-MM.

gDay --21 A value containing a recurring
Gregorian day of the month in the
format ---DD.

gMonthDay --05-21 A value containing a recurring
Gregorian day of the month in the
format --MM-DD.

Name Address A value containing an XML 1 name.

QName po:Address A value containing a qualified XML 1
name.

NCName Address A value containing a “noncolonized”
XML 1 name (a QName without the
prefix).

anyURI http://www.microsoft.com A value containing a URI. The URI
can be relative or absolute.

language en-Us A value containing a natural language
identifier as defined by RFC 1766.

ID A value containing an XML 1 ID
attribute type.

IDREF A value containing an XML 1 IDREF
attribute type.

IDREFS A value containing an XML 1 IDREFS

K37

Type

Example

Description

| attribute type.

ENTITY A value containing an XML 1 ENTITY
attribute type.

ENTITIES A value containing an XML 1
ENTITIES attribute type.

NOTATION A value containing an XML 1
NOTATION attribute type.

NMTOKEN A value containing an XML 1
NMTOKEN attribute type.

NMTOKENS A value containing an XML 1

List of Figures

Chapter 10: Building Secure Web Services
Figure 10-1: A sample Web service scenario.

Figure 10-2: A scenario using SSL or TLS to protect client and server data.

List of Tables

Introduction

Table |-1: Hardware and Software Requirements

Chapter 3: SOAP

Table 3-1:

Base SOAP Fault Codes

Chapter 4. XML Schema

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:

Table 4-7:

XML Character Entity References

The Base64 Alphabet

XML Schema Datatype Constraints
Values of the namespace Attribute
Values of the processContents Attribute
Values of the final Attribute

Values of the block Attribute

Chapter 5: Using WSDL to Document Web Services

Table 51:

Message Ordering for Operation Types

Chapter 6. ASP.NET

Table 6-1:
Table 6-2:
Table 63:
Table 64:
Table 65:
Table 66:
Table 6-7:
Table 68:
Table 69

Properties of the WebMethod Attribute

Properties of the WebService Attribute
Properties of the SoapException Class
Properties of the SoapDocumentService Attribute
Properties of the SoapDocumentMethod Attribute
Attributes of the sessionState Element
Properties of the SoapHeader Class
SoapExtension Class Methods

Selected Properties and Methods of the SoapMessage Class

Table 6-10: Command-Line Switches for WSDL.exe

Table 6-11: Selected Properties, Methods, and Events of the SoapHttpClientProtocol
Class

Chapter 7: XML Serialization
Table 7-1: XML Serialization Attributes
Table 7-2: XmlIRootAttribute Properties
Table 7-3: Mapping Between XML Datatypes and .NET Types
Table 74: XmlElementAttribute Properties
Table 7-5: XmITypeAttribute Properties
Table 7-6: XmlAttributeAttribute Properties
[able 7-7: XmlArrayAttribute Properties

Table 7-8: XmlArrayltemAttribute Properties

Chapter 8: Using Remoting to Build and Consume Web
Services

Table 81: Command-Line Parameters Supported by SoapSuds
Table 8-2: Parameters of the RemotingClientProxy Class

Table 83: Properties of the Header Class

Chapter 9: Discovery Mechanisms for Web Services
Table 9-1: UDDI API Inquiry Methods
Table 92: UDDI API Publishing Methods
Table 9-3: UDDI Registry Find Qualifiers

Table 94: UDDI Type Taxonomy Values

Chapter 10: Building Secure Web Services
Table 10-1: Threat Mitigation Techniques

Table 10-2: Threats to Web Services and Appropriate Mitigation Techniques

Chapter 11: Debugging Web Services
Table 11-1: Visual C# Compiler Debugging Switches
Table 11-2: Properties and Methods of the Debug and Trace Classes

Table 11-3: Conditional Preprocessor Directives

Table 11-4: Properties and Their Associated Tracing Levels
Table 11-5: Class Properties, Methods, and Event

Table 11-6: CounterCreationData Class Properties

Table 11-7: PerformanceCounter Class Properties and Methods

Table 11-8: PerformanceCounterCategory Class Properties and Methods

Chapter 12: Scalability and Availability

Table 12-1: Fields, Properties, and Methods of the Cache Class

List of Sidebars

Chapter 10: Building Secure Web Services

What Is an IV?

